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Preface

This volume is the proccedings of the programme Spaces of Kleinian Groups and
Hyperbolic 3-Manifolds held at the Isaac Newton Institutc in Cambridge, 21 July-
15 August 2003. It is a companion volume to Kleinian Groups and Hyperbolic 3-
Manifolds, London Mathematical Society Lecture Notes 299, the proceedings of a
conference with the same title held at the Mathematics Institute, University of War-
wick, 11-15 September 2001.

The period surrounding these two conferences has scen a series of remarkable
advances in our understanding of hyperbolic structures on 3-manifolds. Many of
the outstanding issues immediately preceding the Newton Institute meeting related
to difficulties in extending results from manifolds with incompressible boundary to
the general case. Proofs of Thurston’s ending lamination conjecture and the Bers—
Sullivan-Thurston density conjecture for general tame groups were announced at the
meeting, and the picture was completed not long after the Newton programme, with
two independent proofs of Marden’s tameness conjecturc. As a result, we now have
a very clear understanding of the internal geometry of hyperbolic 3-manifolds, com-
bined with an increasingly detailed, but quite intricate, picture of the topology and
geometry of the associated deformation spaces of discrete groups.

The Newton Institute meeting turned out to be the international gathering at which
many of these new results were disseminated. Almost all the primary contributors
took part. Quite how rapid progress has been only became appatent to many of us
during the meeting, which will be remembered as a milestonc at which all of the new
ideas were brought together.

This volume contains articles and expositions which it is hoped will give some im-
pression of the breadth and scope involved. Contributions have been arranged bringing
similar themes together, starting with topology and geometry of 3-manifolds, moving
through curve complexes and classical Ahlfors~Bers theory, to computer explorations
and projective structures.

The editors, who were also the organisers of the SKG programme, would like to
extend thanks on behalf of all the participants to the Newton Institute for hosting us
in such pleasant surroundings so conducive to mathematical interaction. We enjoyed
generous funding not only from the EPSRC but also the EU, the NSF, the Leverhulme
‘Trust, the London and Edinburgh Mathematical Societics and, through various indi-
vidual grants, the JSPS. We acknowledge with thanks the support of all these bodies.
I‘inally, we are extremely grateful to David Sanders for his skilled editorial assistance,
without which this volume would not have been produced.

Yair Minsky, Makoto Sakuma & Caroline Series
April 2005
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Drilling short geodesics in hyperbolic 3-manifolds

K. Bromberg!

Abstract

We give an expository account of the deformation theory of geometrically
finite, 3-dimensional hyperbolic cone-manifolds and its application to three clas-
sical conjectures about Kleinian groups.

1. Introduction

In a series of papers ([HK98, HK02, HK]), Hodgson and Kerckhotf developed a defor-
mation theory for 3-dimensional hyperbolic cone-manifolds which they used to prove
various important results about closed and finite volume hyperbolic 3-manifolds. This
deformation theory was extended to infinite volume, geometrically finite hyperbolic
cone-manifolds in [Bro04b, BroO4aj. In this setting the deformation theory has had a
number of applications to classical conjectures about Kleinian groups.

Here is an example of a basic problem that can be addressed via the deformation
theory. Let (M, g) be a geometrically finite hyperbolic 3-manifold that contains a
simple closed geodesic y. Let M = M\ be the complement of y. There will be then
he - unique, geometrically finite, complete hyperbolic metric § on M such that the
conformal boundaries of (M.g) and (M, §) agree. We have the following thcorem

Theorem 1.1 ([BB04]). For each K > 1 there exists an £ > 0 such that if the length
of yin (M,g) is less then ¢ then there exists a K-bi-Lipschitz map
¢: (M\T.g) — (M\T,g)

where T and T are Margulis tubes about Y and the rank two cusp, respectively.

We call such a theorem a “drilling theorem” for we have drilled the geodesic 'y out
al the hyperbolic manifold (M, g).

The way we obtain geometric control of the metric ¢ is to interpolate between
vand ¢ using hyperbolic cone-metrics. The Hodgson-Kerckhoff deformation theory
paves means to bound the change in geomelry as this one-parameter family ol metrics
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varics. The first part of this paper will be an exposition of this deformation theory
emphasizing the most geometric parts. For an expository account of Hodgson and
Kerckhoff’s work see [HKO03]. To keep this paper somewhat self-contained there is
some necessary overlap between the two papers.

In the second part of the paper we will apply the deformation theory to a collection
of classical conjectures in Kleinian groups: the density conjecture, density of cusps
on the boundary of quasiconformal deformation spaces and the ending lamination
conjecture. Rather than discussing these conjectures in their full generality we will
restrict to the special case of a Bers’ slice. This will allow us to demonstrate how the
deformation theory plays a role in approaching the conjectures in a simpler setting.

Acknowledgments. This paper is an expanded version of a talk given at the work-
shop on Spaces of Kleinian Groups and Hyperbolic 3-Manifolds held at the Newton
Institute in August 2003. The author would like to thank Caroline Series, Yair Minsky
and Makoto Sakuma for organizing the workshop and their solicitation of this article.

The author would also like to thank his collaborator, Jeff Brock, with whom he did
much of the work described in this paper.

2. Deformations of hyperbolic metrics

We will begin by examing the various diflerent ways one can study a family of hy-
perbolic metrics: as Riemannian metrics, as (G,X)-structures and as representations
of the fundamental group in the space of hyperbolic isometries. We will sce the ad-
vantages of each viewpoint and the connections between the different viewpoints. A
reference for this material is §1 and §2 of [HK98].

In the final subsection we will discuss complex projective structures on surfaces.
These arise naturally as the boundary of hyperbolic 3-manifolds and will play an im-
portant role in the extension of the Hodgson-Kerckhoff deformation theory to infinite
volume and geometrically finite hyperbolic cone-manifolds.

2.1. One-parameter families of metrics

We start with a family of metrics, g, : V XV — R, on a finite dimensional vector
space V. For each r there is a unique 1, € hom(V, V) such that

dg:(v,w)

= 2 (). @

Since g, is symmetric, 1), is self-adjoint, i.e.

faw LN N [ R SR T
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We measure the size of 1, using the metric g,. Let {ey,...,e,} be an orthonormal
basis for V in the g; metric. Then define the norm of 1, by the formula

Inel? =Y g (e (er),mices)).- 22)

For any v € V we then have

g (v (V) < |nellg: (v v)-
By integrating (2.1) we see that if |1;|| < K forallt € [0, 7] then

e T go(v,v) < gr(wv) < go(v,v).
In particular the identity map on V is a KT-bi-Lipschitz map from the go-metric to
L7-metric.

The trace of 1y; is the divergence and it is the derivative of the volume. The traceless
part of 1, is the strain and it measures the change in the conformal structure.

2.2. Metrics on a manifold

Now we apply the above work to a family of metrics, g;, on a differentiable manifold
M. In this setting 1 is a one-parameter family in hom(TM,TM). Let ||n.(p)| be
the pointwise norm of 1. Let ¢; : (M,go) — (M, g;) be the identity map on M. If
IIn/(p)]l <K forall pe M and all ¢ € [0,T] then ¢, is a KT-bi-Lipschitz diffeomor-
phism.

The identity map on M may not have the smallest bi-Lipschitz constant of all maps
from (M, go) to (M, g;). In particular for an arbitrary family of metrics there is no rea-
son to hope that we can control the norm of 1,. The driving idea behind the Hodgson-
Kerckhoff deformation theory is to find one-parameter families of hyperbolic metrics
&, where the derivative 1), is a harmonic strain field. As we will see below, this extra
structure will allow us to control the norm of 1.

2.3. Hyperbolic metrics on a manifold

1.et #{(M) be the spacc of all hyperbolic metrics on M. Two metrics g and & in #H (M)
are equivalent if there is a diffeomorphism y : M — M isotopic to the identity such
that i - y*g. Given two equivalence classes of metrics we want to find an efficient
path between them. That is we want to find a path g, that minimizes the derivative 1.
The last statement can be interpreted in a number of ways. For example, we could try
to minimize the pointwise or L2-norm of ;. However, il M is not compact then both of

thows nartmie can and will he iafinite Oue oflicient nathe will have twao neaneetios Flirst.
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they will be divergence free so that 1) is a strain field. Second they will be harmonic.
We will not formally define harmonic. Informally, one can think of a harmonic strain
field as locally minimizing the L2-norm (see Appendix B of [McM96]).

A harmonic strain ficld satisfics the following important cquation:

Theorem 2.1. Ler (M.g) be a compact hyperbolic manifold with boundary and let 1
be a harmonic strain field. Then

/||n||2+||Vn||2=/ «VNAT. (2.3)
M oM

This formula is very important because it allows us to compute the L?-norm of
a strain ficld by only knowing information on the boundary. We also note that 1 is
harmonic if it satisfies (2.3) for all compact submanifolds.

Another feature of harmonic strain fields is that they satisfy a mean value inequal-
ity:

Theorem 2.2, Ler (M.g) be a hyperbolic manifold and N a harmonic strain field. If
B is a ball in M of radius R > % centered at p then

)l < 32280 [ inieav

where f(R) = cosh(R)sin(v/2R) — v/2sinh(R) cos(v/2r).

Together, Theorems 2.1 and 2.2 will allow us to get pointwisc bounds on the the
norm of 1, at least for points in the thick part of (M, g).

2.4. Developing maps

Another way to think of a hyperbolic structure is as a (G, X)-structure, where X is
hyperbolic space and G the group of hyperbolic isometrics. A (G,X) structure is an
atlas of charts to X with transition maps which are restrictions of elements of G. A
(G, X)-structure determines a developing map and a holonomy representation.

Here’s how it works for a hyperbolic 3-manifold: A developing map is a local
diffeomorphism,
D:M— 1,

and the holonomy representation is a representation of the fundamental group,

P T (M) - PSLLC Tsom' (IH7%).
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The developing map commutes with the action of the fundamental group where the
fundamental groups acts on M as deck transformations and on H® via the holonomy
representation. That is

D(y(x)) = p(y)D(x) (2.4)

for all y € w; (M). Let g be the pull back of the hyperbolic metric. Then (2.4) implies
that g is equivariant and descends to a hyperbolic metric g on M.

Conversely, a hyperbolic manifold, (M, g), determines a developing map and holonomy
representation. The developing map is unique up to post-composition with hyperbolic
isometries. If we post-compose the developing with an isometry o € PSL,C then we
conjugate the holonomy by o.

Given a smooth family of hyperbolic metrics (M, g;), there is a smooth family of
developing maps D;, and holonomy representations p;. The derivative of the devel-
oping maps determines a family of vector fields v, on M in the following way. For a
point x € M, D;(x) is smooth path in H>. Let v,(x) be the pull-back, via Dy, of the
tangent vector of this path at time ¢. These vector fields are not cquivariant. However,
they do satisfy the following automorphic property. For all vy € m;(M) the difference,
Y.v, — v, is an infinitesimal isometry in the g;-metric. That is, the flow of the vector
licld y,v, — v; is an isometry. This follows directly from differentiating (2.4).

The automorphic vector fields vy, lead to the connection between the developing
niaps and the derivative, 1y, of the metrics g;. The covariant derivative, V;v;, is an ele-
ment of hom(TM,TM). Let sym V,v, be its symmetric part. The covariant derivative
of an infinitesimal isometry is skew. Therefore, the automorphic property of v; implies
that sym Vv, is equivariant and descends to an element of hom(7M,TM). By noting
that the derivative m’df’—w) is the Lie derivative £,,g;(v,w) we see that symV,v; = 1.

2.5, Holonomy representations

|.et R(M) be the space of representations of ; (M) in PSL,C. We are only interested
1t representations up to conjugacy so we would like to study the quotient of K (M)
under the action of PSL,C by conjugacy. Unfortunately, this quotient may not be a
mee object. For instance it may not even by Hausdorff. Instead one takes the Mum-
fond quotient of R (M) which we denote R(M). The Mumford quotient is an algebraic
varicty and its Zariski tangent space at a representation p is the cohomology group
1", (M); Adp). It will wrn out, that at all points werc are interested in, R(M) is
~imply the topological quoticnt of & (M) by conjugacy. Furthcrmore, at these points
R(A1} will be a differentiable manifold and the the Zariski tangent space will be nat-
wally identified with the differentiable tangent space. For this reason we will ignore
the distinetion between the Mumford quotient and the topological quotient.

Ry diftavantiating o connnth family of rearscsatatione n. we ecan e how the dif-
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ferentiable tangent space at each p; is identified with H!(7t;(M); Adp;). Let v be an
element of &, (M). Then p,(y) is a smooth path in PSL,C. Each tangent space of
PSL,C is canonically identified with the Lie algebra sl,C. Therefore the derivative (;
can be thought of as a map

0 1 (M) — shC

for each ¢. This map satisfies the cocyle condition

0:(vB) = p:(y) + Adp (V)p: (B)

for all Yand B in 7, (M) and therefore determines a cohomology class in H'! (1t; (M); Ad§

We also remark that p,(7y) corresponds to the vector field y.v; —v,. The latter
vector field is identified with an element of si,C by pushing forward Y, v; — v; via D;.
This push foward is an infinitesimal isometry on H> and the space of infinitesimal
isometries of i is canonically identified with sI>C.

2.6. Complex projective structures

A complex projective structure on a surface S is an atlas of charts to the Riemann
sphere, @, where the transition maps are restrictions of elements of PSL,C. A projec-
tive structure is another example of (G, X )-structure where G = PSL,C and X = C.
Let P(S) be the spacc of projective structures on S. Since the action of PSL,C is con-
formal, a projective structure also determines a conformal structure on S so there is a
map

P(S)-—T(S)

where T(S) is the Teichmiiller space of marked conformal structures on S. One is
often interested in the space of projective structures with a fixed conformal structure
X. We denote the space of such structures P(X).

Elements of PSL,C take round circles in @ to round circles. Therefore, there is
a well defined notion of a round circle on a projective structure. A conformal map
S between two projective structures £ and X' will distort these round circles. The
Schwarzian derivative, Sf, measures this distortion. We will not give an exact defini-
tion of Sf although we will describe an infinitesimal version below. We will however
statc the key properties of the Schwarzian derivative that we will use. First, Sf is a
holomoprhic quadratic differential on X. The quotient of the absolute value of a holo-
morphic quadratic differcntial and a metric is a function. Using the unique hyperbolic
metric on X we can take the sup-norm of this function to a define the sup-norm, |jSf||c,
of the Schwarzian. This determines a metric on P(X) by setting d(X,%) = ||Sf]|.
Furthermore, given any holomorphic quadratic differential ® on X there is a projec-
tive structure X’ such that for the conformal map f : £ — X/, §f = ®. Therefore P(X)
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is isomorphic to the vector space Q(X) of holomorphic quadratic differentials on X.

A projective structure is Fuchsian if it is the quotient of a round disk in C. Thereis
a unique Fuchsian projective structure, X, in each P(X). We will often be interested
in the distance between an arbitrary projective structure £ € P(X) and this uniquc
l‘uchsian projective structure. We therefore let ||Z||r = d(E,ZF).

As with any (G, X)-structure, a projective structure X on S determines a developing

niap
D:§—C

and a holenomy representation
p:m(S) — PSL,C

satisfying (2.4). Now let I, be a smooth.-path of projective structures in P(X). Then
there is a smooth path of developing maps D; which determine vector fields v, on S.
‘I'he developing maps, D;, can be chosen to be conformal maps from X to C which
will make the vectors fields v, conformal on X.

Let v(z) be a conformal vector field on a domain in C. Then v(z) = f (z)gz where
[ is a holomorphic function. A conformal vector field is projective if its flow consists
ol clements of PSL,C. The space of projective fields is the Lie algebra si,C and v(z)
will be projective if and only if f(z) is a quadratic polynomial. At each point z in
the domain let s(z) be the unique projective vector field that best approximates v at
.. Note that s(z) is obtained by taking the first thrce terms of the Taylor series of f
at 7. Differentiating s(z) we obtain an sl;C-valued 1-form which can be canonically
.nxsomated with a helomorphic quadratic differential. This quadratic dlfferentlal is the
Schwarzian derivative, Sv, of the vector field v.

We now return to our path of projective structures X, in P(X). The Schwarzian
derivative of the conformal vector fields v; will be-equivariant and therefore Sv; will
be a holomorphic quadratic differential on X. The norm ||S¥¢||. is the infinitesimal
version of the metric on P(X) and if we can bound it for all # we bound the distance
between g and X4,

We need onc final fact about projective structures. The holonomy representation
delines a map from P(S) to the space R(S) of representations of 7; (S) in PSL,C mod-
ulo conjugacy. We the have the following theorem.

'Theorem 2.3 (|Hej75, Ear81, Hub81]). The holonomy map
hol : P(S) — R(S)

iy a holomorphic, local homeomorphism.



3. Hyperbolic cone-manifolds

3.1. Geometrically finite hyperbolic cone-manifolds

Let N be a compact manifold with boundary, C a collection of simple closed curves]
in the interior of N and M the interior of N\C. Let g be a complete metric on the
interior of N that is a smooth Riemannian metric on M. We say that g is a hyperbolic
cone-metric if the following holds: First g is a hyperbolic metric on M. Second, for
points on ( the metric has the form

dr? + sinh? rd0? + cosh?® rdz*

where 0 is measured modulo some cone-angle .. Note that the cone-angle must be
locally constant on . Therefore there is a cone-angle associated to each component |
of C.

Since the metric g is complete the boundary ON consists of tori and higher genus |
surfacese Let doNV denote the higher genus components of the boundary. To develop a
good deformation theory we need to assume that there metric g has certain asymptotic |
behavior as we approach doN. We say that a hyperbolic, cone-metric g is geometri- ‘
cally finite if the hyperbolic structure extends to a projective structure on dgN. More
explicitly g is geometrically finite if for each p € doN there exists an open neighbor-
hood of pin N and amap y:V — H3 U Cthatisa homeomorphism onto its image
and is an isometry on VNintM. The restriction of y to V NdpN will determine an atlas
of charts to C. Since hyperbolic isometries of H extend to projective transformations

of C this atlas will determine a projective structure on doN.

Let GF (N, C) be equivalence classes of geometrically finite hyperbolic cone-manifol
on the pair (N, (). If g is a hyperbolic cone-metric on (N, C) we refer to the induced
projective structure on dgN as the projective boundary. The projective structure in-
duces a conformal structure on doN. This is the conformal boundary.

Note that the round circles in the projective boundary are the boundary at infinity
of hyperbolic planes in the hyperbolic manifold. As the 3-dimensional hyperbolic
metric deforms these planes will not stay totally geodesic. This will be detected by
the change in the projective boundary.

3.2. Deformations of hyperbolic cone-manifolds

A meridian for the pair (N, C) is a simple closed curve y C intN that bounds a disk in
N which intersects ( in a single point. Each component of  has a unique meridian up
to homotopy in M = intN\ C. Furthermore if p is the holonomy of a cone-manifold
structure on (N, C) then p(y) will be elliptic (or the identity if the cone angle is a
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multiple of 2%) for all meridians v.

On the other hand there certainly will be representations where not all meridians
me elliptic. For this reason we let R, (M) be the subset of R(M) where the meridians
ate elliptic or the identity. We then have the following theorem which is essentialy
due to Thurston ([ Thu80]).

‘I'heorem 3.1. The holonomy map

hol : GF(N,C) — R.(M)

1s « local homeomorphism.

With this theorem our next goal is to give a local parameterization of R(M). To do
this we first need to define parameters. This local parameterization will be of a neigh-
horhood in R(M), not just a neighborhood in R,(M). These more general represen-
tations also have geometric signifigance. They correspond to Thurston’s generalized
Deln surgery singularities. ' We will not explain the geometry of these singularities

here.

Let
Lgg: RM) — C*

he the holomorphic map which assigns to each representation the k-tuple of complex
lengths of the k-meridians of (N, C). This is our first set of parameters.

The sccond set of parameters comes from the conformal boundary. Given a com-
ponent S of dgN we can define a map from GF(N, C) to the Teichmiiller space T'(S).
‘This map assigns to each geometrically finite cone-manifold the conformal boundary
structure on S. If p € R(M) is the holonomy of a cone-manifold in GF (N, C) then by
pre-composing this map with hol™ !, we obtain a map ds from a neighborhood of p in
R.(M) to T(S). Here we choose the unique branch of hol™! that takes p to the given
peometrically finite cone-manifold. There is then a unique holomorphic extension of
ds to a neighborhood of p in R(M).

Repeating the construction for cach component of dgN and combining the maps
we have a single map
0:R(M) —> T(dgN).

Strictly speaking d is only defined for a neighborhood of p in R(M). We also note that
there are examples of distinct geometrically finite hyperbolic cone-manifolds with
the same holonomy representation. When this happens each manifold will define a
different boundary map 9.
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Now we combine our two parameters. Define
® : R(M) —-» Ck x T(doN)

by ®(p) = (Lar(p).9(p))-

Theorem 3.2 ([HK98, HK, Bro04bl). Ler p be the holonomy of a geometrically ﬁnité
cone-manifold. If the cone-angle is < 21 or the tube radius of the singular locus is
>sinh™' 1 / V2 then the map ® is a holomorphic local homeomorphism. |

Sketch of pm«iﬁ'vftheorem 3.2. By atheorem of Thurston
dim¢ R(M) > k+dimg T (dpN).

Since the map & is holomorphic if we can show that the derivative, ®., is injective at
p then ¢ will be a local homeomorphism at p.

The first step in proving this injectivity is a Hodge theorem: Any tangent vector
of R(M) at p that is in the kernel of 9, is represented by a harmonic strain field 1 on
(M,ga). Note there are some subtle issues to proving this Hodge theorem since our!
manifold is not compact and the metric is not complete. In particular, the harmonic
strain field i} is only unique after making some choice of boundary conditions for the
solution.

Next we would like to calculate the L2-norm of 1 on M. Theorem 2.1 tells how to
calculate the L?-norm of a harmonic strain field on a compact manifold with bound-

ary. We can obtain a similar formula for harmonic strain fields on a geometrically
finite manifold if the strain field fixes the conformal boundary. Analyticaily this is
equivalent to d,mn =: 0 where 9, is the tangent map of the boundary map o from R(M)
to T(9pN). The pointwise norm of such conformal deformations will decay expo-
nentially and the boundary term in (2.3) will limit to zero for surfaces e&jting the
geometrically finite end. This allows us to calculate the L?>-norm of 1 even on the
non-compact geometrically finite ends. In particular, we have

S M+ = [ wvnan

where U is tubular neighborhood of the singular locus, even though M\U is not com-
pact. Note that in general the L?>-norm will be infinite on all of M.

The final step is to calculate the boundary term. This is done in the following way.
In a whbular neighborhood of the singular locus we can decompose M as the sum of
two strain fields, 1 = 1o + 1. The first term, Mg, is an explicit model deformation
completely determined by the derivatives of the complex lengths of the components
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of (he singular locus and the meridians. The second term, 1), is a correction term. It
does not affect the complex length of the singular locus or the meridians. In particular,
there is a vector field v on a tubular neighborhood of the singular locus such that
N, symVy,

‘The advantage of this decomposition is that we can now decompose the boundary
tern:

[osvnan= [ wmoano+ [ svnen. G.1)
oU U oU

The first term on the right can be calculated explicitly and will be non-positive if
{/4;).y = 0. The hard work is to show that the second term will always be non-
positive. Together this implics if @,1 = 0 then 1 = 0 and therefore ®, is injective. [

'The following is a simple corollary of Theorem 3.1 and 3.2.

Corollary 3.3. Let My be a geometrically finite cone-manifold with cone angle o,
whose singular locus has a tubular neighborhood of radius > sinh~' /2. Then, fort
near 0, there exists a one-parameter family of cone-manifolds M; with cone-angle t
und conformal boundary fixed.

We now set some notation that will be used throughout the rest of the paper. For
any cssential simple closed curve yin M, Ly(r) is the the length of Yin M; and Ly(t) is
the complex length of v. The imaginary part of Ly(z) is denoted ©(t). For the special
case of the singular locus, L (z) is the the sum of the lengths of all the components
ol the singular locus. Let U,(R) be the union of the R-tubular neighborhoods of the
components of the singular locus. The n components of the conformal boundary are
denoted X1, ... X", The corresponding components of the projective boundary of M;
arc denoted &} ,..., X7,

The next theorem is key in controlling the geometry of the one-parameter family
of cone-manifolds M;.

‘Theorem 3.4. The one parameter family of cone-manifolds M, can be realized by
metrics g with derivatives 1, such that 1 is a harmonic strain field outside of a
radius 1 tube of the singular locus and

2Lc(1)

2 2
+||V < =
A o M IR <

forall R > 1.
Sketch of proof of theorem 3.4. The proof has two parts: The construction of the met-

rics g, and the estimate on the L2-norm of the strain field 1,. We will skip the first part
and focus on the second.



12 Bromberg

The bound on the L>-norm of 1, follows the same pattern as the completion of the
proof of Theorem 3.2. For each ¢t we decompose 1, in U; as 1), = 1o — 1), where 1 is
a model deformation and 1), is a correction term. We have the same decomposition of |
the boundary term as in (3.1) and once again the correction term makes a non-positive!
contribution. The one difference we have is that the cone angle is now decreasing and'
so the term coming from the model deformation will be positive. However, we can'
make an explicit calculation to bound this positve number and sce that :

2L (1)

*V A < oz
./BU,(R) Mo Atlo = 2sinh®R

which gives the theorem. )

We remark that the only significance of the tube radius 1 in the above theorem is
that 1 > sinh™'1/v/2.

4. The drilling theorems

We call the process of decreasing the cone angle “drilling”. In the three drilling the-
orems that follow we control various geometric quantites as we drill. Note that these
drilling theorems only apply where the one-parameter family of cone-manifolds M,
is defined. To be useful we need to know that we can drill the conc-angle a definite
amount, say from 47 to 27 or 27 to (. As we will sce one consequence of the drilling
theorems is that under certain conditions we can drill this definite amount.

In the first drilling theorem we estimate how the lengths of geodesics change as
we drill.

Theorem 4.1 ([BroO4a}). For each L > 0 there exists an € > 0 and an A > 0 such that
if yis a simple closed curve in M with Ly(a) < L and L¢(Q) < € then

e—AI.C((x)Ly((x) < Ly([) < eAL(,‘(Ot)Ly((x)

and
(1= ALc(0))8y(00) < Oy(1) < (1 +ALc())Oy ()

forallt <o.

Sketch of proof of theorem 4.1. To prove the first statement we need to bound the
derivative L({(t). There are two cases. The first case is when the length of v is bounded
but not very short. In this casc y will be in the thick part of M;. We then use the
L?-bounds given by Theorem 3.4 along with Theorem 2.2 to find a pointwise bound
on 7, for all points on v. This, in turn, bounds the derivative.
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The second case is when v is very short. By a version of the Margulis Lemma, y
will have a large tubular neighborhood U. We decompose 1), on U into a model term,
. and a correction term, 1), as before. A bound on the [*-norm of the model will
bound the derivative L@(t). The model term, 7)o, is like a deformation of a component
vl the singular locus that does not change the cone angle. As in the proof of Theorem
1.2 this determines the sign of the boundary term. However, in this case the sign
will be positive since the torus aU has the opposite orientation of the boundary torus
in ‘I'hcorem 3.2. This is because we are calculating the L2-norm on U rather than
its complement. The sign of the boundary term for m, will also be positive for the
sime reason, This last fact, together with Theorem 3.4 gives the desired bound on the
1" norm of g on U.

‘The second statermnent of the theorem is proved by a similar method. O

In the next drilling theorem we bound the change in the projective boundary of M;
us we drill. This should be thought of as controlling the geometry of the geometrically
finitc ends.

‘Theorem 4.2 ([Bro0O4al). There exists a C depending only on q, the injectivity radius
of the unique hyperbolic metric on X' and ||Z., || such that

d(X, %)) < CLc(a)
forallt <a.

Sketch of proof of theorem 4.2. The derivative of the path X! in P(X) is a path of
(uadratic differentials ®; in Q(X*). We will bound the size of ®.

A embedded round disk D in Z! bounds an embedded half space H in M;. The first
step is to show that a bound on the L?-norm of 1}, on H implies a bound on the sup
norm of @ with respect to the hyperbolic metric on D. The proof of this fact follows
our previous theme. We decompose the harmonic strain field 1, into a model term, 1,
completely determined by @ and a correction term 1.. Oncc again the L?-norm of 1,
on H is the sum of the L?-norms of 1)g and 1}, so Theorem 3.4 bounds the L?-norm of
1. Since 1 is explicitly determined by & this bounds the sup norm of ®;.

Notice that we have only bounded the sup norm with respect to the hyperbolic
metric on D, not with respect to the hyperbolic metric on X'. To finish the proof we
need to compare the two metrics. In particular for every point z we can find a disk
) containing z where the ratio of the two metrics is bounded by constants depending
only on the injectivity radius of X' and ||Zf||. |

Together, the previous two results give enough control to prevent any degeneration
as the cone angle decreases. In particular we have the following theorem:
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Theorem 4.3 ([Bro04al]). For any o > 0 there exists an £ > 0 such that if My is a,
geometrically finite cone-manifold with Lo(a) < £ and tube radius > sinh~! 1/ \/ft
then the one parameter family is defined for all t € [0,ql. i

The final drilling theorem is also the strongest. Theorcm 1.1 is a special case. If
essentjally implies the previous two drilling theorems although the dependence of the
constants on the length of the singular locus is not so clear.

Theorem 4.4 (IBB04]). For any K > 1 there exists an £ > 0 depending only on K and,
o such that the following holds. If Lo(a) < £ there is for each t € [0,0] a standar

neighborhood T:(C) of the singular locus C and a K-bi-Lipschitz diffeomorphism of,
pairs

hy 1 (Ma\To(C),0Ta(C)) — (M:, T:(C),0T:(C))-

Sketch of proof of theorem 4.4. Recall that in Theorem 3.4 we constructed a family of
metrics, M; = (M, g, ), whose derivative was the harmonic strain fields 1};. For pointsf
in the thick part of M; the combination of Theorems 3.4 and 2.2 bound the pointwise
norm of ;. Therefore, on the thick part of M, the identity map on M is a K-bi-i
Lipschitz map from (M, gy) to (M, g;) when the singular locus is sufficiently short. ’

We are left to extend 4, to the thin parts of Mg which will be a collection of Mar-;
gulis tubes. This is done by hand. The maps A, are K-bi-Lipschitz on the boundaryj
of these Margulis tubes and we build an explicit extension of this map inside the tube.;

The construction is somewhat tedious and we will not describe it here. o

5. Geometric inflexibility

A nice application of thc boundary formula of Theorem 2.1 is to show exponential:
decay of the L2-norm. Essentially, the formula shows that the L?%-norm of a harmonic’
strain field on the 3-manifold is equal to its Z2-norm on the boundary. A function
whose integral equals its boundary values will be exponential. This leads to the expo-
nential decay of harmonic strain fields. Here is the precise theorem:

Theorem 5.1 ([BB]). Let M be a complete hyperbolic 3-manifold with boundary and'
1} @ harmonic strain field on M that has finite L*-norm. Let M(t) be the subset of M
consisting of the points that are distance t or greater from oM. Then

Jo P+ IvalE < e [ iR+ val?
M(t) M

Sketch of proof of theorem 5.1. The first step is to see that Theorem 2.1 applies to M

and M(t) to get
2 2
m|*+ ||V _/ =V A
/M(t) [nlI=+ [Vl (e nAn



Drilling short geodesics 15

vveti thought M (1) is not compact. The second fact we need is the following inequality
I? +1vall? > 2(1« v An|.

Now let

70 = [, P +ival?

which we can rewrite as
smy= [ [ (mP+ vniPad
T JoM(r)

where dA is the area form on 0M(¢). Differentiating we have

-ft) = / 24 ||Vn|*)aa
7O = [ (i)
> 2 / *VN A
2 - nAn
> 2f(e).
Integrating both sides of the final inequality gives the theorem. O

McMullen has proven a similar theorem, using entirely different methods, for har-
monic strain fiélds arising from quasi-conformal deformations of complete hyperbolic
} manifolds. He calls his theorem "geometric inflexibilty” which we follow.

One application of the geometric inflexibility theorem is stronger versions of the
drilling theorems. For example, the bounds on the change in length of a closed geo-
desic given by Theorem 4.1 will decay exponentially in the distance of the geodesic
from the singular locus.

To apply geometric inflexibility to Theorem 4.2 we need another definition. A
peometrically finite cone-manifold will have a convex core which will be a subman-
ifold with boundary consisting of convex surfaces. There will be one component of
the boundary the convex core facing each component of the projective boundary. For
Y a closed geodesic and ¥ a component of the projective boundary let d(y,L) be the
shortest distance from vy to the component of the boundary of the convex core facing
.

.

‘Theorem 5.2. There exists C| and C, depending only on 0, the injectivity radius of
the unique hyperbolic metric X* and ||E! || such that

d(Zi,TH) < CeCHCRI ()

forallt < a.
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6. Applications to the Bers’ slice

A Kleinian group is a discrete subgroup of PSL,C. Here we will restrict to the spe-
cial class of Kleinian groups that arise as the image of holonomy representations of
projective structures on a closed surface S. The advantage of restricting to this class is-
that we can use the topology and metric on the space of projective structures to study"j
the family of Kleinian groups. i

For a more precise definition let U(X) be the set of projective structures in P(X);
whose developing map is injective. For every projective £ € U(X) the image of the
holonomy representation p(7;(S)) will act properly discontinuously on the image of
the developing map, D(S). Since the developing map is injective, D(S) will be an open
topological disk in C.A group that acts properly discontinuously on a open subset of
C will be discrete and therefore p(r; (S)) is a Kleinian group.

A Kleinian group is quasifuchsian if it acts properly discontinuously on two dis-
joint open disks in C. Let T(X) be the subset of U(X) where the image of the
holonomy representation is quasifuchsian. The space T(X) is a Bers’ slice of the
space of all quasifuchsian groups. Let p be the holonomy of a projective structure in
T(X) and let  be the open disk, disjoint from D(§), on which p(m, (S)) acts properly
discontinuously. Then Q/p(7;(S)) defines a projective structure and hence a confor-
mal structure on S, wherc S is the oriented surface S with the orientation reversed.
This defines a map T (X) — T'(S) which we call the Bers’ isomorphism for reasons
that the following Thcorem make apparent.

Theorem 6.1 ([Ber60]). The map T(X) — T(S) is a homeomorphism.

The Bers’ slice, 7(X), is the simplest example of a quasi-conformal deformation
space. The above theorem implies that T(X) is canonically identified with Teich-

miiller space. Since U(X) is bounded in P(X) the closure 7'(X) is a compactification
of Teichmiiller space.

In what follows we will continually refer to various objects determined by a pro-
jective structure X in U(X). First there is the holonomy representation p. Since its
image is a Kleinian group isomorphic to 71 (S) the quotient H?/p(m; (S)) is a hyper-
bolic 3-manifold M homotopy equivalent to S. By the previous theorem if L is in
T(X) it will also determine a conformal structure Y in T'(S). If we are examining se-
quences of projective structures we will add indices and decorations to X. These will
be promoted to all the corresponding objects.

We now state three conjectures about these spaces. Note that all of these conjec-
tures have versions that apply to more general families of Klcinian groups.

The first two conjecture are from Bers’ seminal paper [Ber70] which began the
study of the the space U (X).
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Y e T(S)

M = Hp(mi(S))

e T(X) c UX)

Figure 1: A quasifuchian manifold

The following conjecture is usually called the Bers’ density conjecture:
Conjecture 6.2 ([Ber70]). U(X) =T(X).

A projective structure in 0T (X) = T(X)\T (X) is a cusp if the image of the holonomy
Iepresentation contains cusps.

Conjecture 6.3 ([Ber70]). Cusps are dense in the boundary of T(X).

The final conjecture we will state is Thurston’s ending lamination conjecture. To
o so we need to define an ending lamination. We will put off doing this till later and
at this point simply state that to cach £ € U(X) we can define an end invariant which
15 determined by the hyperbolic manifold M.

Conjecture 6.4. An element of U(X) is uniquely determined by its end-invariant.

We note that all three of these conjecture are now known to be true. In fact the
ending lamination conjecture implies the previous two conjectures. Our purpose here
i~ to describe how the deformation theory developed in this paper can be used to
approach these conjectures. At present this approach still has significant gaps (at least
lor the first and third conjecture) but if completed it would provide new proofs of all
three conjectures.

0.1. The Bers’ density conjecture

In its most general form, the density conjecture states that every finitely gencrated
Klcinian group is a limit of geometrically finite Kleinian groups. Very recently this
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complete version of the conjecture has been proven. To do so one needs to co
bine a number of results: the ending lamination conjecturc ([Min03, BCM04]), tamg
ness ([Bon86], [Ago04], [CGO04}) and various theorems on limits of Kleinian grouq
([Thu87, Ohs90, Bro00, KS02]). Although we will only address a very special cas|
of the density conjecture here, the methods described apply in greater generality (sé!
[BBO4)).

Conjecture 6.2 was the original version of the density conjecture. In [Bro02] WJ
proved the following result:

Theorem 6.5. Let . be a projective structure in U(X) such that the image of th'J

holonomy has no parabolics. ThenZ € T(X).

The theorem is proved in two cases. Let M = H?/p(m((S)) be the quotient h
perbolic 3-manifold. Then M has bounded geometry if there is a lower bound on thf
length of any closed geodesic in M. Otherwise M has unbounded geometry. Minsk;
proved Theorem 6.5 when M has bounded geometry. Our contribution was the cas
when M has unbounded geometry. We will give a brief sketch of the proof, emphasiz]
ing those parts that use the deformation theory we have described in this paper.

The starting point is the following tameness theorem of Bonahon:

Theorem 6.6 ({Bon861). The manifold M is homeomorphic to S x (0,1).

A simple closed curve yin S x (0, 1) is unknotted if it is isotopic to a simple close
curve on § x {1/2}.

Theorem 6.7 ([Bro02]). Let Y be an unknotted, simple closed geodesic in M an
assume that the product structure is chosen such that Y lies on S x {1/2}. Then then
is a geometrically finite hyperbolic cone-manifold My with the following properties:

(i) The singular locus has a single component with cone angle 4.

(ii) The length of the singular locus in My is equal to the length of Y in M. The tub
radius of the singular locus in My is greater than or equal to the tube radius o
Yin M.

(iii) M and My are isometric on S x (0,1/2).

The construction of My is similar to the construction of grafting of complex pro
jective structurcs. Although we will not go through it here, it is not difficult. Th
proof that My is geometrically finite is more involved. For a proof in the above cas
see [Bro02]. A proof in a more general setting can be found in [BB04]. An exposito:
account can be found in [BB03].

To apply Theorem 6.7 we use the following theorem of Otal:
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Fheorem 6.8 ([OYS, O3], There exists an €yny > O depending only on the
genus of S such that if ¥ is a closed geodesic in M of length less than € then 7y is

nnhnotied.

Now assume that M has unbounded geometry. Then there exists a sequence of
closed geodesics ; whose lengths limits to zero. In particular we can assume that
DMy < min{€nor, £} for all y; where £ is the constant in Theorem 4.3. Then for
eachi ¥, Theorem 6.7 gives us a cone-manifold M; with cone-angle 4%, Furthermore,
iy (1) of Theorem 6.7 the component of the projective boundary on S x {0} of M; will
b the original projective structure X.

Next we apply Theorem 4.3 to decrease the cone-angle to 21 obtaining a quasi-
tuschsian manifold M. Let X; be the S x {0} component of the projective boundary
ul M]. By Theorem 4.2 there exists a C such that d(X,X;) < CLy,(M;) = CLy,(M) and
therelore X; — X, as desired. This completes the sketch of the proof of Theorem 6.5
it the case of unbounded geometry.

What if M has bounded geometry? As we have already mentioned Minsky proved
Iheorem 6.5 in this case. He did so by proving the ending lamination conjecture
o manifolds with bounded geometry. One might hope to find a direct approach to
C'onjecture 6.2 based on the methods outlined here.

‘I'here are two problems. First, there may not be a sequence of unknotted geodesics.
Sevond, even if we are fortunate enough to have a sequence of unknotted geodesics
the singular locus in the corresponding cone-manifolds will not be short and we won’t
I able to apply Theorem 4.3.

We can circumvent the first problem by lifting to a cover. The second problem is
mare serious. For a cone-manifold whose singular locus is not short to guarantec that
the manifold can be deformed to cone angle zero we need to assume the the singular
locus has a large tubular neighborhood. In particular we have the following theorem
whose proof is beyond the scope of this paper:

Theorem 6.9. Given any o, L > 0 there exists an R > 0 such that the following holds.
l et My, be a geometrically finite hyperbolic cone-manifold with cone angle o and
I () < L and assume that the singular locus has a tube radius > R. Then the one-
parameter family My exists for all t ¢ [0,0..

The next theorem allows us to circumvent both above problems by lifting to a
vover. It is direct corollary of Theorems 2.1 and 4.3 of [FGO1].

Theorem 6.10. Let 'y be a closed geodesic in a hyperbolic 3-manifold M with M home-
aphic § x (0,1). Given R >0, M has a finite cover M for which Y has a homeomorphic
lift ¥ that is unknotted and has a tubular neighborhood of radius > R.
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The tradeoff is that we are now working in a cover instead of with the origin|
manifold. Because of this we can only prove that the projective structure lies in
boundary of the universal Teichmiiller space. We now define this space. Let P(.
be the space of bounded, holomorphic quadratic differentials on the unit disk A in ¢
Given @ € P(1) there exists a locally conformal map f: A — C with § f=2a&. Th
/ 1s unique up to post-composition by elements of PSL,C. Let U(1) C P(1) be thos
quadratic differentials where f is injective (or univalent in the language of compld
analysis) and let T(1) C U(1) be those quadratic differentials where f cxtends §
a quasi-conformal homeomorphism of all of C. The space T(1) is usually callg
the universal Teichmiiller space because all Teichmiiller spaces 7(X) embed in 7'(1;
That is if T is a projective structure in P(X) the the universal cover, £, is a projectiv
structure in P(1) and the map taking X to £ is an isometry.

Bers? made the following conjecture:
Conjecture 6.11. U(1) = T(1). 1
This conjecture is known to be false. Counterexamples where found by GehrinJ

(1Geh78]) and later Thurston ({Thu86]). However, we can prove the following thed
rem

Theorem 6.12. Let X € U(X) be a projective structure whose holonomy does not havi
parabolics. Then £ € T(1).

Proof. In the course of proving Theorem 6.6, Bonahon shows that M has a sequenc
of closed geodesics y; with bounded length and d(7;,Z) — . (Recall that d(y;,X)
the distance from the component of the convex core boundary facing X. 10 ¥;.) Now, fi
each v;, apply Theorem 6.10 to obtain a cover to which we can apply both Theore
6.7 and Theorem 6.9. That is, in the cover, ¥; lifts to an unknotted geodesic ¥; alon
which we can graft to obtain a geometrically finite cone-manifold ;. The tube radi
of singular locus will be sufficiently large so that we can decrease the cone angle tg
27 and obtain a quasifuchsian manifold M..

Let £; be the corresponding cover of the projective structure X. Then $; is a com
ponent of the projective boundary of the cone-manifold M;. After the cone-manifold
deformation this projective structure deforms to a projective structure ):",: By Theorent
5.2 we have

d($:,8) <e MENL (41,). 6.1)

Now d(£,%;) = d(X,y) which limits to zero and Ly,(M;) = Ly,(M) is bounded so the
left hand side of (6.1) limits to zero. Therefore £; — £ = £; in U(1) as desired. lj

2Conjectures 6.2 and 6.11 are labelled Conjectures Il and 1 in [Ber70]. After stating Conjecture II Be
remarks “This would, of course, be a consequence of Conjecture I”. This is not obvious to this author.
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6.2, Cusps are dense

Hhie conjugacy classes of parabolics in p(®;(S)) correspond to disjoint simple closed
vmves on S, In particular there are at most 3g — 3 conjugacy classes. A cusp whose
holonomy has this maximal number of conjugacy classes of parabolics is called a
muvimal cusp. McMullen proved the following strong version of Conjecture 6.3.

Theorem 6,13 ((McM91)). Maximal cusps are dense on the boundary of T (X).

P'muf. Our proof will follow McMullen’s except that we will replace his key estimate
with ‘Theorem 4.2. The part of the argument that we copy can be found on p. 221 of
IMcMOYT .

The first step is to note that projective structures whose holonomy does not have
parabolics are dense in 07 (X). Let X be such a projective structure. To prove the theo-
1+ we need to show that X is approximated by maximal cusps. To do this McMullen
inuds projective structures X; € T(X) that limit to L with the following property: The
projective structures X; correspond to conformal structures Y; € T(S). For each ¥; there
i i pants decompositions P; such that Lp, (Y;) — 0 where the length is measured in the
iniue hyperbolic metric on ¥;.

On Y; we may assume that Lp,(Y;) < 5 min(€umnor, £) Where £ is the constant in
Theorem 4.3, By Bers’ inequality ([Ber70]) this implies that Lp, (M;) < min(€unknor, £)
where M, is the quasifuchsian hyperbolic manifold determined by X;. Now view M; as
uw cone-manifold with singular locus P; and cone angle 2. Since Lp,(M;) < £ we can
decrease the cone angle of M; to zero to obtain a manifold M] with rank two cusps.
‘The projective structure X; is a component of the projective boundary of M; and it
deforms to a projective structure X,. By Theorem 4.2

d(%;, X)) < KLp(M;)

and therefore
fm¥i = fm¥i =%

What remains to show is that the ¥} are maximal cusps. Let M; be the cover of M}
corresponding to the boundary component . Since Lp,(M;) < €upknor, the geodesic
icpresentative of P; is unknotted in M; and therefore M] is homeomorphic to S x (0,1)
with the curves P; removed from the halfway surface S x {1/2}. Therefore M; is
homeomorphic to S x (0,1} and every curve in P; will be parabolic. This implies that
¥’ is a maximal cusp. g

There are versions of the density of cusps for more general quasiconformal de-
formation spaces in [CCHS03] and |CH04]. Both of these papers are generalizations
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of McMullen’s methods. We note that our methods can also be used to prove theJ
generalizations. See §8 of [Bro04a].

6.3. The ending lamination conjecture

The ending lamination conjecture is a classification of Kleinian groups isomorphf
to a fixed group. The complete conjecture has recently be proven by Brock, Canar
and Minsky ([Min03, BCM04]), completing a program of Minsky. In this scction?j
will discuss an alternate approach to the conjecture. The approach is motivated by
theorem of R. Evans, which we will mention below. We also note, that this approac_l
if successful, uses some of Minsky’s results in a key way and is heavily influenced Y
his ideas. The main difference is that we do not use the “model manifold”.

The classifying objects are end-invariants which are objects associated to the suf
faces that compactify the higher genus ends of the hyperbolic manifold. For group
without parabolics these invariants are either a conformal structure or a filling land
ination on the surface compactifying the end. With parabolics the situation is mog
complicated. As usual, we will restrict to groups without parabolics.

For ¥ € U(X) the corresponding manifolds M has two ends both compactified
S. On S x {0} the end-invariant is always the conformal structure X. If £ € T(X
then the end-invariant for S x {1} will also be a conformal structure. In this cag
the conformal structure will be the image of X in T'(S) under the Bers’ isomorphism
For ¥. € U(X)\T(X) the end-invariant is a lamination. To define it we recall th
there is a sequence of closed geodesics, ¥;, whose length is bounded and such th
d(v;,L) — 0. Furthermore, Bonahon ({Bon86]) shows that these geodesics can b
chosen to be homotopic to simple closed curves on § x {1/2}. As simple closed curve]
on S, the y; will limit to a lamination A. Most importantly this ending laminatio'
will not depend on the initial choice of geodesics. This is also a result of Bonaho
({Bong6]). '

The following theorem of Minsky shows the importance of the ending la.minT
tion. It is a combination of his proof of the ending lamination conjecture for bounde
geometry manifolds and one of the first steps in the proof of the general conjecture.

Theorem 6.14 ((Min01]). Let X and X' be projective structures in U(X) and assum}
that the corresponding hyperbolic manifolds M and M’ have the same end-invarian
Then either:

(i) M and M are isometric.

(ii) M and M’ both have unbounded geometry and there exists a sequence of simpld
closed curves ¥; so that both Ly, (M) and Ly,(M') limit to zero.
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We empasize that (1) and (2) are not mutually exclusive. In fact the goal is to show
that (1) always holds. This is cxactly the ending lamination conjecture.

For ya simple closed curve on S, let U (X ,y) C U(X) be those projective structures
in 11{X) where the conjugacy class of vy is parabolic under the holonomy represen-
mtion. Let d-(7,X) be the distance between 7y and X in the curve complex. That is
W, (7.X) is the minimum number & such that there exist £+ 1 essential simple closed
vinves, Bo, ..., Br on S with Bo = v, B; and B4 disjoint, and By a bounded length curve
i the hyperbolic metric on X.

While we belicve the following conjecture is interesting in its own right, as we will
e helow it also implies the ending lamination conjecture for manifolds in U(X) with
wibounded geometry.

Conjecture 6.15. There exists a constants C; and C», depending only on the genus of
v, such that the diameter of U(X,y) in P(X) is bounded by Cye~C24c(X-),

Our motivation for this conjecture is as follows. The distance dp(7v,X) gives a
lower bound on the thickness of the convex core of every manifold in U(X,y). One
then wants to combine this with geometric inflexibility to obtain the desired bound.

We now show how Theorem 6.14 and Conjecture 6.15 together imply the ending
Lumination conjecture for projective structures in U (X ) with unbounded geometry and

N0 CUSPS.

l.et ¥ and ¥’ be as in Theorem 6.14 and assume that M and M’ have unbounded
peometry. Let y; be the sequence given by (2) in Theorem 6.14. By Theorem 6.5 there
vaisls a sequence X; in T(X) converging to . Let M; be the associated hyperbolic
¥ manifolds. After passing to a subsequence we can assume that Ly, (M;) — 0. Now
tepeating the construction in the proof of Theorem 6.13, for each X; we can find a cusp
Y. in U(X,y;) such that
d(%;, ;) < CLy,(M)).

I'herefore the sequence 5 converges to X. We similarly find a sequence )i: converging
10 Y’ with each £/ in U(X, ;). Finally we note that the ; converge to the ending lami-
nation so de{(Y;, X) limits to infinity. Conjecture 6.15 then implies that both sequences
y, and £/ have the same limit so £ =X’

Note that, in the above argument, if we replace the curves y; with pants decompo-
-itions P; such that
1imL,>i (M) = 1imLPi (M’) =0
— {—o0

then 5 and )i; will be maximal cusps. Since maximal cusps are uniquely determined
by the pants decompositon £; = $ and the corresponding limits, £ and ¥/, are equal
without appealing to Conjecture 6.15. This argument, due to Evans, leads to the fol-
lowing theorem that we mentioned at the begining of this section.
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Theorem 6.16 (|[Eva03]). Let ¥ and T’ be projectiize structures in U(X) with corre-
sponding hyperbolic manifolds M and M'. Assume that there exist a sequence of pants
decompositions P; with

_limLp,. (M) = _limLpl (M,) =0.
{—oo [—o0
ThenX =Y.

We remark that having such a shrinking pants decomposition is not as restrictive:
as it may seem. In fact, the density of maximal cusps (Theorem 6.13) implies that
there is a dense Gy of such manifolds in 97'(X). Furthermore, if M has such a se-
quence of pants decompositions and M’ has the same ending lamination as M then the
lengths of the same sequence of pants will limit to zero in M’. This last statement is_'-
proven in [Min03] and is a large part of the proof of the ending lamination conjccture._:
Namely, in [Min03], Minsky constructs a model for M that is completely determined.
by combinatorial information coming from the ending lamination. He then shows that’
there is a Lipschitz map from this model to the hyperbolic manifold M. Furthermore,
every sufficiently short curve in M will also be short in the model. Therefore, if M"
has the same ending lamination as M then it will have the same model and the same:
short geodesics. The final step in Brock, Canary and Minsky’s proof of the ending
lamination conjecture is to show that this model is also bi-Lipschitz. This is done in.
[BCMO04]. On the other hand, Theorem 6.16 completely avoids the work in [BCMO04]
which seems significant.
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On topologically tame Kleinian groups with bounded
geometry
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Abstract

We consider a generalisation of Minsky’s rigidity theorem for freely inde-
composable Kleinian groups with bounded geometry to topologically tame freely
decomposable case in order to apply it to the following two results. The first is
the uniqueness property for the problem of realising given end invariants by a
group lying on the boundary of the quasi-conformal deformation space of a con-
vex cocompact group. The second is a generalisation of Soma’s result on the third
bounded cohomology groups of closed surface groups to the case of frece groups.

1. Introduction

A topologically tame hyperbolic 3-manifold has three pieces of information: the
liomeomorphism type, the conformal structures at infinity for geometrically finite ends
{ol non-cuspidal part), and the ending laminations for geometrically infinite ends. The
ending lamination conjecture, due to Thurston, says that these pieces of information
uniquely determine the isometry type of the manifold. Recently, Minsky proved this
conjecture affirmatively, partially collaborating with Brock and Canary. Although the
result is in the process of publication, the special case when manifolds have freely
mdecomposable fundamental group and bounded geometry, i.e., when the injectivity
radii are bounded below by a positive constant, has been already published in [Min94],
[Min00] and [MinOQ1]. In the present paper, we shall explain how the argument of Min-
sky there can be generalised to the case of topologically tame manifolds with bounded
peometry possibly with freely decomposable fundamental groups, and then show the
lollowing two kinds of its applications. It should be noted that the recent affirmative
solution of Marden’s tameness conjecture by Agol, Calegari—-Gabai and Choi implies
that the assumption of the topological tameness in our results can be removed.

The first result (Theorem 1.1) is about the uniqueness of hyperbolic 3-manifolds
having given end invariants provided that the minimal arational geodesic laminations
constituting the given end invariants satisfy the bounded geometry condition. The
~tatement is as follows. '
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Theorem L.1. Ler M be a compact hyperbolisable 3-manifold such that oM is non-
empty and no component of oM is a torus. Denote by S\,...,S, the components of
M. On each S;, let \; be either a marked hyperbolic structure or a minimal arational
geodesic lamination with the bounded geometry condition (3.1) in Theorem 3.1, which
supports a projective lamination contained in the Masur domain. We suppose further-
more that if M is a product 1-bundle over a closed orientable surface, then A1 and
Az are not geodesic laminations homotopic in M, and that if M is a twisted I-bundle
over a closed non-orientable surface, then A is not a lift of a geodesic lamination on
the base surface to the boundary of M regarded as the double covering of the base
surface. Then, a Kleinian group T satisfying the following conditions is unique up to
conjugation.

(1) Nr = H3/T is homeomorphic to the interior of M and

(2) the end of Nr corresponding to S; is either geometrically finite and the Teich-
miiller parameter at infinity is A; when A; is a marked hyperbolic structure, or
geometrically infinite with its ending lamination equal to \; when A; is a geo-
desic lamination.

The existence of such a Kleinian group I" will be dealt with in Ohshika [Ohsa] and
[Ohsc]. Our assumptions on given laminations are necessary to show this existence
part.

Theorem 1.1, combined with some argument due to Namazi-Souto [NS] and Ohshika;.
[Ohsc], implies a useful corollary as follows if we consider iterations of hyperbolic
transformations of Teichmiiller spaces. Let M be a compact hyperbolisable 3-manifold
with non-empty dM containing no tori. The Teichmiiller space T(0M) of M cov-
ers the quasiconformal deformation space QH(M) of a convex cocompact hyperbolic
structure of M. Let AH(M) be the space of faithful and discrete representations of
7, (M) to PSL,(C) modulo conjugacy. It is known that QH(M) coincides with a com-
ponent of the interior of AH(M) (cf. Marden [Mar74] and Sullivan [Sul85]). The :
following will be proved in §5. Here a modular transformation is said Lo be hyper- }
bolic when its restriction to each component is either the identity or pscudo-Anosov. '
Such a transformation is called Masur when each constituent pseudo-Anosov map
has stable lamination in the Masur domain. When M is an /-bundle over a closed
surface, we further assume that the stable laminations of the two pscudo-Anosov au-
tomorphisms of the coordinates are not homotopic if the bundle is trivial, and that the
pseudo-Anosov map is not a lift of that of the base surface if the bundle is twisted.

Theorem 1.2. Let M be as above. Let ® be a Masur hyperbolic modular trans-
Jformation on the Teichmiiller space T(0M) of oM. Let X be a point in T(IM) and
[Pr] € QH(M) a convex cocompact representation uniformising o"(X). Then {[pa]}
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converges 10 d unigue |p.| ¢ AW(M). Furthermore, for two Masur hyperbolic mod-
ular transformations 0y ,wa, their limits as above coincide if and only if ®, is homo-
topic to @ in M.

The second application is about the third bounded cohomology groups of free
groups. Soma showed in [Som97] that if we fix a positive number &, then third
bounded cohomology classes of a closed surface induced from the fundamental co-
homology class of doubly degenerate hyperbolic 3-manifolds whose injectivity radii
are bounded below by 8y cannot accumulate in the third bounded cohomology group.
This implies as a corollary the third bounded cohomology group of a closed surface
has dimension of cardinality of continuum. We shall show in this paper the same holds
lor free groups using topologically tame groups which are limits of Schottky groups
constructed by the way of Theorem 1.2.

Acknowledgements. The authors would like to express their hearty gratitude to the
organisers of the conference “Spaces of Kleinian Groups” for inviting us to this mar-
vellous conference, to the Newton institute of Mathematical Sciences for its hospital-
ily, and to Yair Minsky and the referee for useful comments.

2. Notation

2.1. Kleinian groups

A Kleinian group is a discrete subgroup of the group PSL,(C) = Isom™* (H?) of ori-
cntation preserving isometries on the hyperbolic space F3. We always assume any
Kleinian group in this paper to be finitely generated and purely loxodromic for sim-
plicity. A Kleinian group I is said to be topologically tame if the quotient manifold
Nr :=H3/T is almost compact, i.e., homeomorphic to the interior of a compact man-
ifold. We say that a Kleinian group I" or a manifold Nr- has bounded geometry if the
translation lengths of the elements in I are bounded below by a positive constant de-
pending only on I'. If I" has bounded geometry, the injectivity radius at any point of
Nr is bounded below by a constant depending only on the manifold.

2.2. Ends and End invariants

l.et I" be a Kleinian group. An end e of Nr is a collection {U;}; of open subsets of N
with the following three properties: (1) dU; is compact but U; is not, (2) for any i, j,
some k satisfies Uy C U;NUj, and (3) {U;}; is maximal under the conditions (1) and
(2). Each elcment in e is called a neighbourhood of e. An end of Nr- is said to be geo-
metrically finite if it admits a neighbourhood which is disjoint from the convex core
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of Nr. Otherwise, it is called geometrically infinite. When I” is topologically tame, the
quotient manifold Nr contains a compact core C such that Nr is homeomorphic to the
interior of C and the closure of the complement of C is homeomorphic to 9C X [0, ).
Furthermore, each component of Nr — C is a neighbourhood of an end of Ny

We define the end invariant v(e) for each end e of Mr as follows. Recall that the -
quasiconformal deformation space of I is biholomorphically equivalent to the product
1. T(S.)/Mod,, where the product is taken over all geometrically finite ends of N, Se
is the surface at infinity corresponding to ¢, and Mod., is a subgroup of the Teichmiiller
modular group acting on T(S,) which is determined by the topological structure of M
(cf. Kra [Kra72] and Maskit [Mas71}).

When an end e is geometrically finite, we define the end invariant v(e) of e to be
the coordinate in the product space associated with the end e. Suppose that e is geo-
metrically infinite. Fix a hyperbolic structure on the component S, of dC facing e. A
geodesic lamination A is called the ending lamination for e if there exists a sequence
{v:}; of simple closed curves on S, such that their geodesic representatives ¥; in Nr
tend to ¢ and are homotopic to the y; in Ny — C, and their projective classes [y;] con-
verge to a projective measured lamination whose support is A. As was shown in §10 of
Canary [Can93], for any geometrically infinite end of topologically tame N, the end-
ing lamination is uniquely defined. It should be also noted that an ending lamination
is minimal and arational: that is, every leaf is dense and every complementary region
is simply connected. We define the end invariant v(e) of a geometrically infinite end
e to be the ending lamination for e. For negatively curved manifolds, one can define
ends and ending laminations in the same way as above.

3. Bounded Geometry Theorem

3.1. Bounded geometry condition

We recall the bounded geometry condition for geodesic laminations introduced by
Minsky [Min00]. Let S be a compact orientable surface with negative Euler charac-
teristic. Let C(S) be the curve complex of S and ((S) the k-skeleton of C(S). Fix
a hyperbolic structure on S of finite area and let A denote a geodesic lamination on
S. Let Y be an essential subsurface of S. Take a covering ¥ — § corresponding to
7, (Y) and consider the preimage A on ¥. If this preimage has leaves that are either
non-peripheral closed curves or essential arcs that terminate in the boundary compo-
nents of ¥, these components determine a simplex of the complex of arcs A(¥) (cf.
Minsky [Min00] and [Min01]) and we define 7y (A) to be its barycentre. If there are
no such components, then we set my (L) = 0. Let A,V be gcodesic laminations on §
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with non-empty Tty (A) and Tty (v). We define their Y-distance by:
dy (A, V) = dggy (my (M), Ty (),

where dg gy is the canonical path metric on A(¥).

Theorem 3.1 (Characterisation). Let I be a purely loxodromic topologically tame
Kicinian group and C a compact core such that Ny — C is homeomorphic to dC x
|),00). Let ey, ...,en be the geometrically infinite ends of Nr, and S\, ...,S, compo-
nents of aC facing them. Let \; be the ending lamination for e;. Then, Nr has bounded
weometry if and only if for any pants decomposition P, on S; (i = 1,...,m), there is a
constant K > 0 such that

Sl;PdY(Pi,M) <K, (3.1

where the supremum is laken over all essential subsurfaces for which dy(P;,);) is
defined.

Indeed, one can check that the characterisation above also holds for Kleinian
proups with parabolic elements (if we modify the definition of Bounded geometry,
see [Min01]). However, for simplicity, we only consider the case of Kleinian groups
without parabolic elements.

This theorem is proved by the essentially same way as that of the case when I’
is freely indecomposable by Minsky (cf. [Min94] and [Min00]). For the sake of
completeness, we shall give an outline of the proof for the case of topologically tame
Kleinian groups.

Fix a topologically tame Kleinian group I'. Set N = Nr for simplicity. Then there
exists a branched covering pr : N — N such that N has a boundary-irreducible compact
core € and each end é of N has a neighbourhood U; which is mapped isometrically to a
neighbourhood of an end of N by pr. Furthermore, each end of N has a neighbourhood
which is isometrically lifted to a neighbourhood of an end of N (see Canary [Can93])).
Therefore, N has bounded geometry if and only if N has.

We take C such that N — € is homeomorphic to dC x (0,0) and the restriction of
pr to each component of N — € is isometric. For an end e of N, we fix a component
Us of N — € such that pr(U;) is a neighbourhood of e. Let & be the end of N which
has U; as its neighbourhood and Sz a component of dC facing é.

Pleated surfaces Let ¢ be a hyperbolic metric on S and A a geodesic lamination on
(8,0). A pleated surface f : (S,6) — N with bending lamination A is a 7;-injective
continuous mapping such that both f !; and fg_j is locally isometric, and the path
metric induced from N coincides with ©. A geodesic lamination A’ is realisable if it is
contained in the bending lamination of a pleated surface.
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Analogously to the case of hyperbolic manifolds, we can confirm that the bounded
diameter lemma (cf. [Bon86])), the uniform injectivity theorem (cf. Thurston [Thu86]),
the short bridge arcs lemma (cf. [Min01]), and the efficiency of pleated surfaces (cf.
[Min00]), the homotopy bound lemma (cf. Lemma 4.1 of [Min01]) hold in our case.

We shall briefly discuss these resuits and how to generalise them here. The bounded
diameter lemma asserts that there is a uniform upper bound for the diameters of
pleated surfaces modulo their thin parts, which depends only on the topological type
of the surfaces. Since this derives from the Gauss-Bonnet formula, in our situation of
negatively curved manifold with curvature < —1, we get the same bound. The uniform
injectivity theorem asserts that at any two points not too close each other in a thick
part of any lamination realised by an incompressible pleated surface in any hyperbolic
3-manifold, the unit vectors tangent to the lamination at the two points are not mapped
to vectors too close each other in the hyperbolic 3-manifold. This is proved by contra-
diction, supposing that there is a sequence of pairs of such tangent vectors mapped to
vectors closer and closer, and using the Gromov limit of these pleated surfaces and the
injectivity of the pleating locus of the limit. All of this machinery works also for our
negatively curved manifolds. The short bridge arc lemma asserts that for any bridge
arc on an incompressible pleated surface that either lies in the thick part or is primitive,
if its endpoints lic on leaves that are nearly parallel in its image in the target hyper-
bolic 3-manifold, then the arc is short (independently of the pleated surface). Since
this follows from the uniform injectivity, once we generalise the uniform injectivity,
we can also generalise this lemma to our negatively curved manifolds. The efficiency
of pleated surfaces asserts that on a doubly-incompressible pleated surface realising a
finite-leaved maximal lamination whose compact leaves have lengths bounded away
from 0, the difference between the length of any closed curve and that of the ho-
motopic closed geodesic in the hyperbolic 3-manifold is bounded by the alternation
number of the closed curve and the leaf. This is also derived from the uniform injec-
tivity theorem; hence can be generalised to our setting. Finally, the homotopy bound
lemma asserts that between two homotopic pleated surfaces realising the same system
of simple closed curves, there is a good homotopy. This relies on the elementary hy-
perbolic geometry and some property of convex sets in the hyperbolic space (Lemma
8.6 in [Min01]). It is easy to see that convex sets in the universal cover of our nega-
tively curved manifolds, where the sectional curvature is bounded above by —1, have
the same property.

We can also show that any pleated surface takes only the €p-thin part of the sur-
facc into the €;-thin part of N (cf. Lemma 3.1 of [Min00]). However, the constants
appearing in all of them depend on N.

The following lemma is a corollary of the fact that any sequence of pleated surfaces
realising multi-curves converging to an ending lamination of an end must tend to the
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samie end. This fact can be proved by showing that there is a dichotomy for a measured
lumination on a boundary component of a compact core: either it is realised by a
pleated surface or any sequence of pleated surfaces realising multi-curves converging
(o the lamination tends to an end. (This is obtained from a generalisation of Bonahon’s
roposition 5.1 in [Bon86] by Canary.)

Lemma 3.2. Let S be a component of 9C. Let & and A be the end of N facing S and
the ending lamination of &, respectively. Then there is a neighbourhood of V of A; in
the geodesic laminations on S with the following properties.

(1) Any finite, leaved lamination in 'V is realisable. Furthermore, the image of any
pleated surface realizing A € V is contained in U,.

(2) Let P — Q be an elementary move for two pants decompositions P,Q € V. Then
the internal lamination hpg with respect to P and Q is realisable and the image
of a pleated surface realising hp,p is contained in Us.

Next, we note the following.

I.emma 3.3. There exist a positive number L) and a sequence {P,}, of maximal curve
swwtems on S such that

(i) the geodesic representative P, exits the end & as n — oo,
(i) 0< en(P;) <Ly, and

(iii) the projective classes [Py} converge 1o a projective measured lamination whose
support is h;.

The constant L depends only on N.

Proof. There exists a sequence of pleated surfaces f, : § — N tending to the end &
which realise simple closed curves with projective classes converging to a projective
measured lamination with support A, by the definition of ending laminations. Let G,
be the hyperbolic structure on S induced by f;, from N. Take a pants decomposition
P, on (§,0,) that has the smallest total length among all the pants decomposition.
Then there is a positive constant Ly, i.c., the Bers constant, depending only on the
topological type of § bounding the total lengths of the P, above.

Lect € be a positive constant less than the Margulis constant for the hyperbolic 3-
manifolds. Since N has sectional curvature less than or equal to —1 everywhere, the
¢-thin part of N consists of Margulis tubes. Let P be the union of closed geodesics in
N freely homotopic to f,,(P,). By taking a subsequence, we can assume that cither all
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the P; have a component with length greater than or equal to € or none of them have.
First we consider the case when all the P; have such a component. We denote by
a component of P; having length greater than or equal to €. Let v, be the component
of P, corresponding to v;. Then the distance between f,(Y,) and ¥, is bounded above
by a constant depending only on € since the length of f,(7,) is bounded above by L;.
Hence ¥ tends to the end &. Let g, : S — N be a pleated surface realising P,. Then the
image of g, contains ¥;. Since pleated surfaces cannot kecp intersecting a compact set
while having a part tending to an end, g, also tends to the end é.

Next we consider the case when all the components of P, have lengths less than €,
Let v, be a component of P,, and ¥, the closed geodesic freely homotopic 0 f,(¥x).
There is an €-Margulis tube V,, whose axis is ¥};. Since f; (Y,) has length less than L,
the disiance between f,(¥,) and V,, is bounded independently of n. If V,, does not tend
to the end é, then either infinitely many tubes among the V,, are contained in a compact
set or V, tends to an end other than é passing to a subsequence. The former cannot
happen since a compact set can intersect only finitely many Margulis tubes. If the
latter is the case, since the distance between V,, and v}, tending to the end € is bounded,
V, must intersect the core C. Again this is a contradiction. Thus V,, must tend to the
end & as n — oo, Therefore, as before, the pleated surface g, realising P, which must
contain the axis of Vj,, also tends to &, and we have completed the proof. O

Outline of proof of Characterisation First, we prove “only if” part by reductio ad
absurdum. Suppose that I" has bounded geomeiry but there exist a component S of 9C
and a sequence {1}, of essential subsurfaces of S such that

dy,(P,Ae) — o (3.2)

for some pants decomposition P and the end e of N facing S. Let & be a lift of e. Since
the projection N — N is isometric near ends, the divergence also holds for the end &
of N. Hence we may assume S is a component of C (i.e., S = Sz and A; = A,).

We may take such P with the property that all the components of P are realised
as closed geodesics in U with length £5(P) < L;. Indeed, let P, and P, denote two
pants decompositions on §. By applying Minsky’s bounded geometry theorem for
the quasi-Fuchsian group uniformising two surfaces on which the lengths of both P
and P, are bounded by L;, we have for every incompressible subsurface ¥ on § that
dy (P1, P») is bounded by a constant depending only on the associated quasi-Fuchsian
manifold. This means that once some pants decomposition satisfies (3.2), any pants
decomposition on S satisfies the same condition.

We here claim that projective classes of dY, (n = 1,2,...) converge to a projective
measured lamination on S with support A;. Indeed, let p : ®;(S) — PSL,(C) denote
a representation of a singly degenerate group such that the ending lamination of its
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peometrically infinite end is Aa, and in the Teichmiiller parameter of its geometrically
finite end, P has length bounded by L;. Since A; is maximal, p admits no accidental
parnbolic transformations. Since ty, (P) is contained in 7y, (C(p, L)) and so is &y, (A)
by I.emma 3.3, where C(p,L1) = {Y€ G(S) | £(y) < L1}, by our assumption we have

diamy, (C(p,L1)) = diamgy,) (ny, (C(p,L1))) = dy,(P,Ag) —2 — .

Ience £p(9Y,) — 0 as n — o by Theorem B of [Min00]. Therefore, the geodesic
representatives of Y, must exit the geometrically infinite end of H? /p(m; (S)). This
mplies that the projective classes of dY, converges to a projective measured lamina-
(1lon whose support is equal to A;.

I.ct us continue to prove “only if” part. We note that by the argument above, the
peodesic representative of 9Y, exit the end €. By taking a subsequence of {¥,}, if
necessary, we may assume that either all or none of the ¥, arc annuli. In either case,
we shall be lead to a contradiction by an argument of Minsky in [Min00]. For the sake
ol simplicity, we only deal with the case where no ¥, is annulus.

The following lemmas can be proved in the same way as those in [Min00].

l.emma 3.4. For L > 0 there is D > 0, depending only on L and the topological type
of'S, and ny > 0 for which the following statement holds:

lor any n > ny and any simple closed curve y on S intersecting Y, essentially with
(n(Y) < L, there exists a pleated surface gy, : S — N with an induced metric Oy which
ix homotopic to the inclusion of S and maps 0Y,, geodesically, such that for any shortest
essential proper arc t in (Y,,0y) we have

dy, (Y’ T) <D.
l.emma 3.5. There exist D and n3 > 0 such that the following holds:

I'orn > n3, let go and g\ be a pair of pleated surfaces both homotopic to the inclusion
of S mapping dY, to closed geodesics. Let 6y and O\ be the induced metrics by g
and g1 on S. If To and t; are shortest essential proper arcs in (Y,,00) and (¥,,0)),
respectively, then

dy, (10,171) <D.

We here notice that the length of the geodesic representative of any component of
Y, is bounded below by a positive constant independent of # because I" has bounded
geometry (Compare Lemma 3.5 with Lemma 4.2 of {Min00]).

Fix a sequence of simple closed curves {Yu};,_, on § such that the geodesic rep-
resentatives Yy, exit € and £5(Y;,) < L;. Take a sufficiently large m > 0 so that 7,
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lies deep inside ¢. Let y denote a component of P. Consider two pleated surfaces
gy : (S.0y) — N and gy, : (S,0y,) — N as Lemma 34. Let T, and Ty, denote the
shortest proper essential arcs in ¥, with respect to the metrics 6y and Gy, respectively.
Then the propositions above imply

dyn (Y‘ Ym) S dyn (Yi T’Y) + dyn (TY’ T'Ym) + dYn (T‘Ym 7Ym) S 3D
where D > 0 is independent of n and m. Thus, by letting m — oo, we deduce
dy,(v:Ae) < 3D,

which contradicts (3.2) since 7y is a component of P.

Next we shall give a sketch of the proof of “if” part. First of all, we shall show the
quasiconvexity lemma for compressible boundary components. Let C be a subset of
G(S). We say that ( is B-quasiconvex at the end ¢ if there exists a neighbourhood U;
of & with the following properties: Let {B;}%_, be a geodesic in C(S). When By, B, lie
in C and each geodesic representative B} of B; in &V is contained in U;, the geodesic
{B:i}!_, is contained in the B-neighbourhood of C.

For L > 0, let
C(S.L):={ye C(S) [ £5(Y") <L}.

Then, we define the projection Ilg : C(S) — P(C(S,L)) as follows, where P(X) de-
notes the set of subsets of X: Giveny € C(S), let P, be the curve/arc system associated
to the smallest simplex containing x. If P, contains vertices {v;}; € ((S) whose geo-
desic representatives are contained in no pleated surface in N, we define Is(x) = {v;}:.
Otherwise, we define

s (x) := Uyshort(cy),

where f ranges over all pleated surfaces realising P, and short(c ) is a subset of (y(S)
consisting of curves Y whose total lengths with respect to the hyperbolic structure 6
induced by f are less than L;.

Lemma 3.6. (Quasiconvexity at ends) For L > L; there is B > 0 depending only
on L and the topological type of S such that C(S,L) is B-quasiconvex at the end é.
Moreover; if {B:}t, is a geodesic in C(S) with Bo,B, € C(S,L) and the geodesic
representative of a simple closed curve on S representing each B; is contained in the
neighbourhood Uj; of & which appeared in the definition of quasiconvexity of the end,
then

de(s)(Bi, (i) < B

foreachi=0,...,n
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‘To show this femma, we need the following proposition, which is proved by an
ampument similar to that of Lemma 3.2 of [MinO1].

Proposition 3.7. (Coarse Projection) The map I satisfies the following conditions:

(1) {Coarse Lipschitz near ends) There exist a neighbourhood Us of é and by > 0
such that if x,y € A(S) satisfy

(@) day(xy) <1,
(b) neither pleatg(P;) nor pleatg(P,) is the empty set, and

(c) the image of any pleated surface in pleatg(Pyc) Upleatg(Py) is contained in
U;

then
diam(s) (s (x) UITs(y)) < bo.

(2) (Coarse idempotence) If x € C(S,L,) then
degs)(x, Ts(x)) = 0.

I’roof of Lemma 3.6. By Proposition 3.7, such {B;}}_, are contained in the B-neigh-
bourhood of C(S,L). The last part of the assertion derives from lemma 3.3 of [Min0O1].
O

We return to explaining the proof of the “if” part. Take a sequence of closed
geodesics in {Y; }¢ in N such that

£5(Y;) — inf{€y(y*) | " is a closed geodesic on N} (3.3)

as k — oo, If infinitely many geodesics in the sequence touch a compact set of N, the
length of ¥, cannot tend to zero. Hence I has bounded geometry and we are done.

Suppose {Y; }5_, cxits an end & of N and all the ¥} are contained in a neighbour-
hood U; of &. We have only to consider the case when ¢y (Y;) - » 0, which implies that
¢ 1s homotopic 1o a simple closed curve y; on S within Uz by Otal’s theorem [Ota93].
Taking C large if necessary, we may assume that U satisfies the conditions of Lemma
3.6 and Proposition 3.7. Let V denote a neighbourhood of A; in the space of geodesic
laminations on § such that the image of any pleated surface realising a finite lamina-
tion in V is contained in Us (Lemma 3.2). Fix a maximal curve system P € V with
¢5(P) < Ly. Since v exits €, for any sufficiently large k, there is a maximal curve
system O € V with the following properties:

. fN(Qk) <L, and
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« for pleated surfaces f. and f.. realising P and Q, respectively, the &;-Margulis
tube of y; is homologically encased by f. and f_.

(cf. Lemma 3.3. See also Lemma 7.1 of (Min01]). Join P and Q; with a resolution
sequence
P=P—>P— - —>P=0,

as Theorem 5.1 in [MinO1]. If we choose U appropriately again, we may assume that
the image of the good homotopy (for the definition, see §4 of [Min01]) connecting
pleated surfaces realising P; and Py is contained in Uz (cf. Lemma 3.2). Thus, by
applying Minsky’s construction in §7 of [Min0O1] with Lemma 3.6, we have a model of
the part of N between f and f_ which covers the €,-Margulis tube of ¥; in Uz. Since
the number of blocks intersecting the Margulis tube of ¥; is bounded by a constant
depending on the topology of S and the right-hand side of (3.1) (see (7.1) in [Min01]),
by the definition of good homotopies, one can control the geometry of the intersection
between the Margulis tube of y; and any block to conclude that the radius of the
Margulis tube of ¥; is uniformly bounded, when 7 is not a component of any P;. The
case when 7 is a component of some FP; is also treated in a similar way to Minsky’s
method (see p.176-p.177 of [Min01]). Thus we get a lower bound of the lengths of
all {; };=, which we desired (see (3.3)).

3.2. Ending Lamination Theorem for groups with bounded geometry

Now we can complete the proof of Theorem 1.1.

Theorem 3.8 (Uniqueness). Let Iy and I'y be topologically tame Kleinian groups
whose compact cores are mutually homeomorphic. Suppose that Uy has bounded
geometry. If the ending invariants of I'1 and I"; coincide, then Iy and 1", are conjugate
in PSL,(C).

Proof. Since I'; has the same end invariants as those of I'j, by Theorem 3.1, I'; also
has bounded geometry. Thus, applying the ending lamination theorems by Minsky
([Min94}) and Ohshika ([Ohs96] and [Ohs98]), we have the assertion. O

4. Limit of Kleinian groups

To deduce Theorem 1.2 from Theorem 1.1, we need a convergence theorem proved in
[Ohsa] and some argument in [Ohsc]. We shall review them in this section.

The following theorem was proved in Ohshika [Ohsa] applying the convergence
theorem by Kleineidam-Souto [KS02] except for the condition (i) for the case when
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M is a handlebody. When M is a handlebody, we need to use the result of Brock and
Souto |BS04] to show that the limit given in [Ohsa] is topologically tame.

‘I'heorem 4.1 (Existence of limit). Let M be a hyperbolisable 3-manifold with non-
empty OM without torus components, and S\,...,Sm denote its boundary compo-
nents.  Suppose that arational measured laminations ;... A j, contained in the
Masur domain are given on (at least one) boundary components Sj,,...,S;, among
Sio--.,8m and conformal structures my,...,m, on the remaining boundary compo- -
nents Sy ..., S;,. When M is homeomorphic to S, X 1 and p = 2, we further assume
that Aj, and \j, are not homotopic in M. When M is a twisted I-bundle over a non-
orientable surface, we further assume that Aj, is not a lift of a measured lamination
on the base surface. Let {X;'}._, be a sequence in T (Sy) which converges to either
mj, if k =1ij or a projective measured lamination whose support is Aj,, otherwise. Let
|Pa] € QH{M) be a representation which uniformises (X}',...,X).). Then the sequence
{|Pn)}ine contains a subsequence which converges to {p..) € AH(M). The limit group

P o(71 (M), which we denote by T, has the following properties:

() T is topologically tame,

(ii) @ homotopy equivalence from M to H3 /T induced by p.. is homotopic to a home-
omorphism h from M to a compact core Cr of H3 /T,

(iii) the end ey of H3/T facing h(Sy) is either geometrically finite with conformal
structure hy(m;,) at infinity when k = iy, or geometrically infinite when k = j.

(iv) h(Aj,) is unrealisable by a pleated surface homotopic to h|S,.

In the theorem above, although we state that I is topologically tame and k(A ;) is
unrealisable, we do not know if it represents the ending lamination for the end facing
h(S;,). We shall now show that if we add an extra condition that the length of A ;, with
respect to X} is bounded as n — oo, the ending lamination facing h(S,) is actually
represented by h(A;,). This was proved independently by Namazi-Souto [NS] and
Ohshika [Ohsc]. We shall briefly review the gist of the argument in [Ohsc].

Proposition 4.2. In the situation of Theorem 4.1, assume furthermore that the length
of Aj, with respect to X]’: is bounded as n — oo, Then for each k = jj, the ending
lamination of the geometrically infinite end facing h(Sy) is represented by h(A).

Outline of Proof. We shall sketch the argument in [Ohsc]. Let ¢; be the end facing
h(Sy) for k = j;. We divide our argument into two cases: the first is when M is not a
handlebody and the second is when M is a handlebody. We start with the first case,
which is simpler.



42 UnSnikg & Miyachi

Suppose that M is not a handlebody. Let {w;y;} be a sequence of weighted simple
closed curves converging to A;. We can assume that wyy; is contained in the Masur
domain of S;. Then, there is a pleated surface &; : Sy — H>/I" homotopic to h|S
which realises y; as a closed geodesic Y} tending to the end e;. Since M is not a
handlebody and Si represents a non-trivial second homology class, as was shown in
Ohshika [Ohsb], this sequence of pleated surfaces gives rise to a product structure
Sk x R of a neighbourhood of the end e such that &; is homotopic to S; x {pt} within’
Sk x R for large i.

On the other hand, since ¢; is known to be topologically tame, we can assume that
h(S) cuts off A(Sy) X [0,c0) containing e from H> /" with h(S;) x {0} identified with
h(Sk), and that there is a measured lamination g in the Masur domain of Si such that
h(p) represents the ending lamination of e. Let r;c; be a sequence of simple closed
curves on Sy converging to y. Then the closed geodesic ¢} is homotopic to x(c;) in
h(Sk) x [0, o) for sufficiently large i. Since the product structure of a neighbourhood of .
ey is homotopically unique, by isotoping 4, we can assume that the product structures
St X R given by h; and A(Sg) x R which we have here coincide.

Bonahon showed that in this situation, if ¢; and y; do not intersect thin Margulis .
tubes outside the axes, then we get i(w;y;, ric;) — 0. By using the fact that both ¢; and
v: are simple and contained in the Masur domain, if we take sufficiently small ¢ > 0,
we can assume, by changing w;y; and r;c; preserving the supports of their limits, that
the closed geodesics cannot intersect -Margulis tubes outside the axes. Thus we can
show that i(A,,u) = 0, which means that (A ) also represents the ending lamination
of eg.

Next we consider the case when M is a handlebody, which is more difficult to deal
with. We only state claims which constitute steps for the proof. In this case, we can
first show that Ct is also a handlebody using the fact that the closed geodesic ¥} as
above tends to ¢; and Bonahon’s intersection lemma, This implies that the conver-
gence of [p,] to I is strong, which means that I is also a geometric limit of |p,,]. Then
by pulling back the closed geodesics ¢} by approximate isometries and using a version
of Bonahon’s intersection lemma generalised to deal with variable target hyperbolic
3-manifolds for w;c; and Ay in H3/p, (%, (M)), we see that i(Ar,u) = 0. This means
that A(%;) also represents the ending lamination of ¢. |

5. Iterations of hyperbolic actions

Let M be a hyperbolisable 3-manifold with oM = U ;S; # 0. Assume that no S;
is a torus. A holomorphic automorphism ® = (®,...,®,) of the Teichmiiller space
T (0M) is said to be hyperbolic if each coordinate @ is either hyperbolic or the identity
on T(S;). We say such a transformation is Masur hyperbolic when each hyperbolic
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ttansformation of a coordinate 7°(S;) has stable lamination in the Masur domain of
Ni. We turther assume that when M is a product I-bundle over a closed orientable
suirliice, the stable laminations of the two coordinates of hyperbolic actions ®; and @,
are not mutually homotopic in M, and that when M is a twisted /-bundle over a closed
non-oricntable surface, ®; is not a lift of an automorphism of the base surface.

"The quasi-conformal deformation space QH(M) of a convex cocompact structure
1w M is identified with a quotient space T(0M)/Mody(M) of the Teichmiiller space
ol oM (cf. Kra [Kra72]). Hence there exists the canonical projection IT: T (0M) —
OU(M). If [p] =TI(X) for some X € T (M), we say that [p] uniformises X.

I'toof of Theorem 1.2. Set X = (X',...,X™) € T(0M) and let @ be a Masur hyper-
holic modular action on T(dM). Let [p,] = II(0"(X)) € QF(M) (n > 1). We may
nssume that o; is hyperbolic if i < k and the identity otherwise. Then for i < k, @?(X")
vonverges to the stable measured lamination [;] of the pseudo-Anosov mapping on S;
which induces ;.

By the extra-assumptions for the case of /-bundles and the arationality of the stable
laminations, we can apply Theorem 4.1, and conclude that {[p,]}, contains a subse-
(juence converging to [p.] € AH(M). The fact that the limit group has end invariants
corresponding to (|11, ..., [, X**1,...,X™) follows from Proposition 4.2. Theorem
1.8 guarantees that the limit is unique. Consequently, {[p.]}. converges to [pe).

Since two hyperbolic modular transformations are homotopic if and only if their
stable laminations are homotopic in M, the latter part of the theorem also follows from
‘Theorem 3.8. O

6. Third bounded cohomology groups

As an application of the results above and those in Miyachi [Miy02], we shall con-
sider a generalisation of Soma’s theorems on the third bounded cohomology groups
of surface groups to free groups. We recall basic definitions first.

For a topological space X, an n-dimensional cochain c is said to be bounded when
sup{|c(c)||o is an n-simplex in X} is finite. The bounded cochains constitute a sub-
complex of the cochain groups C*(X). The n-th cohomology group of this complex
of bounded cochains is the r-th bounded cohomology of X. Similarly, we can define
the bounded cohomology groups for a group G, and they coincide with the bounded
cohomology groups of K(G, 1).

We consider a complete hyperbolic 3-manifold M homeomorphic to the interior
of a handlebody of genus g > 2. The volume form s of M determines a bounded
3-cocycle, by setting the value on a singular 3-simplex ¢ to be the volume of the
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straightening of 6. The third bounded cohomology class represented by Qg this way
is called the fundamental class on M and is denoted by Wy.

Let G be a Fuchsian Schottky group of rank g, which is a free group of rank g if
regarded as an abstract group. For i == 1,2, let (I';,$;) be an element in AH(G), where
$i : G — PSL,(C) is a faithful discrete representation with its image I';, which we
assume to be geometrically infinite, topologically tame, purely loxodromic, and have
bounded geometry. Pulling back 03 Jr; bY ¢i, we geta third bounded cohomology
class in H} (G, R).

For a bounded 3-cochain ¢ of G, we define its norm by ||¢c|| = sup{|c(c)||o is
asingular 3-simplex}.  This induces a pseudo-norm on H}(G,R) by |y =
inf{flell | [c] = v}

The main result in this section is the following generalisation of Soma’s result on -

the third bounded cohomology groups of surface groups.

Theorem 6.1. Let (T, 0;)(i = 1,2) be purely loxodromic, geomerrically infinite, and
topologically tame groups in AH(G) with bounded geometry as above. Suppose that
the injectivity radii of points in H? /Ty are bounded below by 8y > 0. Then, there '
exists a constant € depending only on 8 such that if ||¢7 (O -, ) — 03 (O p, ) || <€ '1

in H}(G,R), then (T',¢1) = (T'2,02) as elements in AH(G).

Before starting the proof of this theorem, we shall see its corollary. Let S be a

closed surface of genus g, which is also regarded as the boundary of a handlebody H :

of genus g. Let fi, f2 be pseudo-Anosov automorphisms of S whose stable laminations

are in the Masur domain of S. Take a point X € 7 (S) uniformised by G. We consider -
the limit of p,(i) € QH(G) uniformising f7*(X) for i = 1,2. By Theorem 1.2, we have -

limits (I';, ps (i) € AH(G) fori = 1,2, and (T}, p(1)) coincides with (I'z, peo(2)) if
and only if ®; and @, are homotopic in H. Having noted these, we now state a theorem
of Soma [Som96] with an alternative proof obtained from our theorem above.

Corollary 6.2, H;:’ (G,R) has dimension of the cardinality of the continuum.

Proof. Let (T',¢) be a limit of p, uniformising f”(X) for a Masur hyperbolic f as
above. Let A be a stable lamination of f which is assumed to be contained in the Masur
domain. Let ¢ be a simple closed curve on S representing a non-trivial free homotopy
class in H. Let Dy be the k-time right-hand Dehn twist on S along ¢. Regarding ¢
as a homotopy equivalence from H to I>/T", we consider an element (I',¢ o Dy) in
AH(G). Since f = D; ' fDy has a stable lamination D; '(A), Theorem 1.2 implies
that the limit of elements in QH (G) uniformising (f;)"(X) as n — oo coincides with
(', oDy). Since Dy is not homotopic to the identity in H, these (I', ¢ o D) are all
distinct. Let y € H}(G,R) be (¢ 0 Dy)*(wpsr). Then {fj@|} is totally bounded.

A i e e T
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H (1, ¢ o Dy) spans a finite dimensional subspace, then it must have a subsequence
vonverging to some clement in Hi}((], R) and contradicts Theorem 6.1. This implies
that 118*(G,R) = H}(G,R)/{y € H}(G,R)|||c|| = O} has infinite dimension. Then
the same argument as in the surface group case works and we see that HE(G, R) has
dimension of the cardinality of contimuum., (i

I"oof of Theorem 6.1. This can be proved by the same argument as the proof in Soma
|SomY6] for the case of closed surface groups. Soma’s argument proceeds as follows:
I'nst. using the Cannon—Thurston map, he gets continuous maps from the limit set of
(i, which is R in Soma’s case, to the limit sets of I'; and I, both of which are Cin
Soma’s case. This gives rise to an equivariant map from the complement of a measure
0 set of Ar, to Ar,. It is shown that this map can be extended to H> equivariantly.
The assumption of the bounded geometry implies that this map gives a conjugation
Irom 'y to I, which takes an ending lamination of H?*/T'; to that of H® /T,. Minsky’s
viiling lamination theorem for the bounded geometry case implies that this yields an
isometry from H3 /T to H*/I";. Now, we shall indicate a point where Soma’s proof
has to be changed to fit into our case.

Thus, the only point where our proof should be different from his is the construc-
tion of Cannon-Thurston maps for I'; and the negligible sets for Cannon-Thurston
imaps. We have to define a Cannon-Thurston map from the limit set of a Fuchsian
Schottky group, whereas in Soma’s case the map is defined on the entire circle at infin-
ity. The problem caused by this difference can be avoided as follows: In [Miy02], we
proved that there is a ¢;-equivariant continuous map F; of € for i = 1,2. Furthermore,
Ii(x) = F(y) if and only if x and y are in either the same leaf or the same component
of the complement of the lift of the ending lamination of ['; on Qg = C — Ag, where
A¢ is the limit set of G. Let Ay be the set of points in C each of whose preimage
with respect to Fy consists of at least 2 points and set Aj = F, '(A;). Then we have a
comparing map Fy o F| 1. Ar, — Ay — Ap,.

Finally, we should check that A; and A are negligible and Fj is a measurable map
{rom Ag to Ar,. Indeed, by using the model manifold of H3 /Tt (cf. [Ohs98]), one
can see that Ay consists of non-conical limit points. Hence, by Sullivan’s ergodicity
theorem [Sul81], Ay has measure zero (cf. the discussion after the proof of Lemma
1 in [Som95]). Since A; consists of the endpoints of leaves of the ending lamination
for Y1, by virtue of Birman and Series’ theorem in [BS85], the Hausdorff dimension
of Ay is zero. Furthermore, since the Hausdorff dimension of Ar, is positive and its
Hausdorff measure is also positive (e.g. [Nic89]), F} is measurable. O
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An extension of the Masur domain

Cyril Lecuire

Abstract

The Masur domain is a subset of the space of projective measured geodesic
laminations on the boundary of a 3-manifold M. This domain plays an important
role in the study of the hyperbolic structures on the interior of M. In this paper,
we define an extension of the Masur domain and explain that it shares a lot of
properties with the Masur domain.

{. Introduction

A compression body is the connected sum along the boundary of a ball of /-bundles
over closed surfaces and solid tori. Among the compression bodies are the handle-
hodies which are the connected sums along the boundary of solid tori D? x S'. If M
is a compression body and if 0M has negative Euler characteristic then, by Thurston
hiyperbolization theorem, its interior admits a hyperbolic structure. Namely there are
discrete faithful representations p : ) (M) — Isom(H?) such that H*/p(m;(M)) is
homeomorphic to the interior of M. If such a representation p is geometrically finite,
it is said to uniformize M.

In [Mas86]), H. Masur studied the space of projective measured foliations on the
houndary of a handlebody. He described the limit set of the action of the modular
group on this space and defined a subset of the space of projective measured foliations
on which this action is properly discontinuous. In [Ota88], J.-P. Otal defined a similar
subset O of the space of projective measured geodesic laminations on the boundaries
of compression bodies. This set O C PML(JM) is called the Masur domain and J.-
P. Otal showed that the action of the modular group on O is properly discontinuous.
He also proved the following: if int(M) is endowed with a convex cocompact hyper-
bolic metric, then any projective class of measured geodesic laminations lying in O is
rcalized by a pleated surfacc. He also showed that the injectivity theorem of [Thu86]
applies for such pleated surfaces.

Later it was shown that the projective classes of measured laminations in O are an
analogous of what Thurston called binding laminations on /-bundles over closed sur-
faces. Namely if we have a sequence of geometrically finite representations
Pn : Ty (M) — Isom(H?*) uniformizing a compression body and a measured geodesic



lamination A € O such that [, (A) is bounded, then the sequence (p,) contains
an algebraically converging subsequence. This property has been obtained for var-
ious cases in [Thu87], [Ota94], [Can93], [Ohs97] and the general statement comes
from [KS02] and [KS03].

In this paper, we allow M to be any orientable 3-manifold with boundary satisfying
the following: the Euler characteristic of M is negative and the interior of M admits
a complete hyperbolic metric. We will consider the following set :

D(M) = {A € M L(dM)|3n > 0 such that i(A,dE) > 1 for any essential annulus
ordisc E C M}.

First we will link this set D(M) with the result of [Lec02] and deduce from this that .
the support of a geodesic measured lamination lying in (M) is also the support of a
(in fact many) bending measured geodesic lamination of a representation uniformizing
M. Using the continuity of the bending measure proved in [KS95] and [Bon98], we
will show that D(M) is connected. We will also discuss the relationships between -
D{M) and the Masur domain.

After that, we will prove that the set 2(M) has the following properties:

If int(M) is endowed with a convex cocompact hyperbolic metric, any measured
geodesic lamination lying in D(M) is realized by a pleated surface and such a pleated -
surface satisfies the injectivity theorem of [Thu86].

If p, is a sequence of geometrically finite metrics uniformizing M and A € D(M)
is a measured geodesic lamination such that /,, () is bounded, then the sequence (p,)
contains an algebraically converging subsequence.

We will also discuss the action of the modular group on D(M).

I would like to thank F. Bonahon, I. Kim, K. Ohshika and J.-P. Otal for fruitful
discussions, and J. Souto who gave me the ideas of Proposition 4.2. I also thank the
referee for pointing out some mistakes in a previous version.

2. Definitions

2.1. Geodesic Laminations

Let S be a closed surface endowed with a complete hyperbolic metric; a geodesic
lamination on S is a compact subset that is the disjoint union of complcte embed-
ded geodesics. Using the fact that two complete hyperbolic metrics on S are quasi-
isometric, this definition can be made independent of the chosen metric on S (see
[Ota94] for example). A geodesic lamination whose leaves are all closed is called a



multi-curve. I cach hall-leaf of a geodesic lamination L is dense in L, then L is min-
tmal. Such a minimal geodesic lamination is either a simple closed curve or an irra-
nonal lamination. A leaf [ of a geodesic lamination L is recurrent if it lies in a minimal
peadesic lamination. Any geodesic lamination is the disjoint union of finitely many
nminimal laminations and non-recurrent leaves. A leaf is said to be an isolated leaf if
it 15 cither a non-recurrent leaf or a compact leaf without any leaf spiraling toward it.

[.ct L be a connected geodesic lamination which is not a simple closed curve
and Ict us denote by S(L) the smallest surface with geodesic boundary containing
! lnside S(L) there are finitely many closed geodesics (including the components
ol JS(L)) disjoint from L and these closed geodesics do not intersect each other (cf.
[1.ec02}); let us denote by 9'S(L) > dS(L) the union of these geodesics. Let us re-
muve from (L) a small tubular neighborhood of &'S(L) and let S(L) be the resulting
sarface. We will call S(L) the surface embraced by the geodesic lamination L and
0'S(1) the effective boundary of S(L). If L is a simple closed curve, let us define S(L)
(o he an annular neighborhood of L and 9'S(L) = L. If L is not connected, S(L) is
the disjoint union of the surfaces embraced by the connected components of L and

1o _ . Iy
dS(L) U{Lf is a component of L} d'S(LY).
A measured geodesic lamination A is a transverse measure for some geodesic lami-
, such that

mation  Al: any arc k ~ [0,1]
Jh - S — A, is endowed with an additive measure dA such that:

— the support of dAy; is 'A|Nk;

— if an arc k can be homotoped into k' by a homotopy respecting |Af then
Jidh — [ dh. We will denote by M L(S) the space of measured geodesic lamina-
tion topologised with the topology of weak* convergence. We will denote by |A| the
support of a measured geodesic lamination A.

Let v be a weighted simple closed geodesic with support |y] and weight w and let A
I a measured geodesic lamination, the intersection number between 7y and A is defined
by i(y.A) = W/IY! d\. The weighted simple closed curves are densc in M £(S) and this
intersection number extends continuously to a function
P ML(S) x ML(S) — R (cf. [Bon86]). A measured geodesic lamination A is ara-
tional if for any simple closed curve ¢, we have i(c,A) = [.dA > 0.

2.2. Real trees

An R-tree 7 is a metric spacc such that any two points x,y can be joined by a unique
simple arc. Let G be a group acting by isometries on an R-tree T’; the action is minimal
it there is no proper invariant subtree and small if the stabilizer of any non-degenerate
arc is virtually Abclian.
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A G-equivariant map ¢ between two R-trees 7 and 7" is a morphism if and only
if every point p € 7 lies in a non-degenerate segment |a, b] (but p may be a vertex of
[a,b]) such that the restriction ¢y, is an isometry. The point p is a branching point
if there is no segment [a, b] such that ¢ ;) is an isometry and that p €]a, b].

Let S be a connected hyperbolic surface and let ¢ : H? — S be the covering pro-
jection. Let L C S be a geodesic lamination and let (M) ~ 7 be a minimal action
of (M) on an R-tree T; L is realized in T if there is a continuous cquivariant map
H? — T whose restriction to any lift of a leaf of L is injective.

Let A € M L(S) be a measured geodesic lamination; following [M0O93], we will
define the dual tree of A. Consider the following metric space pre‘l;: the points of
pre‘T;, are the complementary regions of g1 (A) in H2, where g : H? — S is the cover-
ing projection and the distance d : T, x T, — R is defined as follows. Let Ry and R be
two complementary regions and choose a geodesic segment k C H? whose vertices lie
in Ro and Ry; we set d(Rg,R)) to be the g~!(A)-measure of k. Then, there is a unique
(up to isometry) R-tree 7; and an isometric embedding e : pre?;, — 7, such that any
point of 7, lies in a segment with endpoints in e(preR,) (cf. [GS90]). The covering
transformations yield an isometric action of 7; (M) on Iy; if &) (c) is the distance of
translation of an isometry of 7, corresponding to a simple closed curve ¢, we have
8x(c) = i(c,\). This construction yields a natural projection H? —g~'(A) — 7. If A
does not have closed leaves, this projection extends continuously to a map m : HZ — -
Th.. Otherwise, replacing closed leaves of A by foliated annuli endowed with uniform -
transverse measures, we get also a continuous map 7, : H? -+ I, (cf. [Ota94]).

2.3. Train tracks

A train track < in § is the union of finitely many "rectangles" b; called the branches
and satisfying:

— any branch b; is an imbedded rectangle [0,1] x {0, 1] such that the preimage of the
double points is a segment of {0} x {0,1] and a segment of {1} x [0,1];

— the intersection of two different branches is eithcr empty or a non-degenerate seg-
ment lying in the vertical sides {0} x [0,1] and {1} x [0,1];

— any connected component of the union of the vertical sides is a simple arc embed-
ded in ax<()M .

A connected component of the union of the vertical sides is a switch. In each
branch the segments {p} x [0,1] are the ties and the segments [0,1] X {p} are the
rails.

A geodesic lamination L is carricd by a train track T when:
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I lies in T

[or cach branch b; ol T, L11h; is not empty, lies in the image of [0,1]x0,1[ and
cach leaf of L is transverse to the ties.

Nutice that, in some papers, a geodesic lamination satisfying the above is said to be
“minimally carricd” by ~.

A measured geodesic lamination A is carried by a train track T if its support |A| is
vairicd by 1.

l.ct S be a hyperbolic surface, let T C S be a train track and let 7; (M) ~ 7 be
a minimal action of 7t;(M) on an R-tree 7. Let g~!(t) C H? be the preimage of
t under the covering projection; a weak realization of t in T, is a T; (M)-equivariant
continuous map 7 : ¢~ (t) — 7 such that 7 is constant on the ties of ¢ ~! (t), monotonc
amd not constant on the rails and that the images of two adjacents branches lying on
upposite sides of the same switch have disjoint interiors.

2.4. 3-manifolds

I ¢t M be a 3-manifold, M is irreducible if any sphere embedded in M bounds a ball.
We will say that M is a hyperbolic manifold if its interior can be endowed with a
vomplete hyperbolic metric. Let X be a subsurface of 0M; an essential disc in (M,X)
(v adisc D properly embedded in (M, X) that can not be mapped to dM by a homotopy
tixing dD. The simple closed curve dD is a meridian curve. The manifold M is
houndary irreducible if there is no essential disc in (M,0M). An esscntial annulus in
(M, L) is an incompressible annulus A properly embedded in (M,X) which can not be
mapped to dM by a homotopy fixing 0A. Let A be an essential annulus in M; if one
component of dA lies in a toric component of dM we will call the other component of
A a parabolic curve.

Let m C @M be a simple closed curve; a simple arc k C 0M such that kNm = ok is
an m-wave if there is an arc ¥ C m such that ¥’ Uk bounds an essential disc. A leaf [
of a geodesic lamination . C M is homoclinic if it contains two sequences of points
(4;) and (y,) such that the distance between the points x, and y, measured on I goes to
-0 whereas their distance measured in M is bounded. A leaf I of a geodesic lamination
1. C OM is homoclinic if a (any) lift of I to dM is a homoclinic leaf. Notice that, with
this definition, a meridian or a leaf spiraling around a meridian is homoclinic.

Let p : ® (M) — Isom(H?) be a faithful discrete representation such that
i /p(m1(M)) is homeomorphic to the interior of M. Let L, C S? = JH" be the limit
set of p(71(M)), let C(p) C H? be the convex hull of L, and let C(p)*” be the intersec-
tion of C(p) with the preimage of the thick part of H3/p(%;(M)). The quotient N(p)
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of C(p) by p(m1(M)) is the convex core of p and p is said to be geometrically finite it
N(p) has finite volume. A geometrically finite representation p : 7t; (M) — Isom(H?3)
such that H3/p(m,(M)) is homeomorphic to the interior of M is said to uniformize
M. If p uniformize M, there is a natural homeomorphism (defined up to homo-
topy) h : M -+ C(p)¢P coming from the retraction map §* — L, — C(p)°P. Let us
choose a geometrically finite representation p with only rank 2 maximal parabolic
subgroups (namely the maximal subgroups of p(7;(M)) containing only parabolic
isometries have rank 2). We will define the compactification M of M as the closure of
h(M) = C(p)°P in the usual unit ball compactification of Fi®. This compactification.
does not depend on the choice of the representation p (see [Lec02, section 2.1]). We:
will call this compactification the Floyd-Gromov compactification of M.

Let [, C 9M be a half-geodesic and let Z_ be its closure in M; we will say that [, :
has a well defined endpoint if l:+ — I contains one point. We will say that a geodesic,
I < M has two well defined endpoints if [ contains two disjoint half geodesics each -
having a well defined endpoint. Two distinct leaves land i of a geodesic lamination -
L C M will be said to be biasymptotic if they both have two well defined endpoints in :
M and if the endpoints of [ are the same as the endpoints of . A geodesic lamination
A C OM is annular if the preimage of A in 9M contains a pair of biasymptotic leaves. i
l

2.5. Pleated surfaces

Let p : ) (M) — Isom(H?) be a discrete faithful representation and let N = H3 /p(m; (M)

A pleated surface in N is amap f : S — N from a surface S to N with the following
properties:

— the metric s on S obtained by pulling back the metric induced on f(S) C N by the
length of rectifiable paths is a hyperbolic metric;

— every point in S lies in the interior of some s-geodesic arc that is mapped to a
geodesic arc in N;

The pleating locus of a pleated surface is the set of points of S where the map fails

to be a local isometry. The pleating locus of a pleated map is a geodesic lamination
(cf. [Thu80}).

Let p : T (M) — Isom(H3) be a discrete faithful representation such that there
is a homeomorphism & : int(M) — N = H*/p(n;(M)) and let S C M be a properly
cmbedded surface homeomorphic and homotopic to 0M. A measured geodesic lami-
nation A & M L(0M) is realized by a pleated surface in N if there is a pleated surface

f 8 -» N homotopic to /s such that the restriction of f to the support of A is an ;
isometry, A

et i et © At ¢ e HRTE— st
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2.6. Masur domain

| ¢t M be a compression body that is neither a solid torus nor an /-bundle over a closed
autlace; its boundary has a unique compressible component, the exterior boundary
that we will denote by d, M. Let PML(J.M) be the space of projective measured
peadesic laminations on 9,M and let M’ be the closure in PML(d.M) of the set of
jmojective classes of weighted meridians. The compression body M is said to be a
sl compression body if it is the connected sum along the boundary of an /-bundle
over i closed surface and a solid torus or of two I-bundles over closed surfaces. It is
nand 10 be a large compression body otherwise. When M is a large compression body,
{he Masur domain is defined as follows:

0= {A e PML@M)|i(A,u) > 0 for any u € M'}.

When M is a small compression body, the definition is the following one:

O={k e PML(M)|i(A,v) > 0 for any v € PM L(3d,BC) such that there is y €
‘A" with i(u,v) = 0}.

We will denote by O C M L(9M) the set of measured geodesic laminations whose
projective class lies in O.

l.et M be an orientable hyperbolic 3-manifold such that oM has negative Euler
characteristic. We will say that a measured geodesic lamination A € M L(dM) is
doubly incompressible if and only if

Im > 0 such that i(A,dE) > 1 for any essential annulus or disc E.

We will denote by D(M) C M L(0M) the set of doubly incompressible measured
peodesic laminations.

Doubly incompressible multi-curve were first introduced by W. Thurston in [Thu]
and we have the following equivalence: (M. |y, C) is doubly incompressible (in the
sense of [Thu]) if and only if there is a weighted multi-curve Yy C M L(0M) with
support [7y] satis{ying the condition above except in the following situation (in which y
lies in D(M) but (0M, |y], C) is not doubly incompressible in Thurston’s sense):

(—) there is a homcomorphism between M and an /-bundle over a pair of pants P
such that {y| is mapped to a section of the bundle over dP.

The set D(M) of doubly incompressible measured geodesic laminations is the
cxtension of Masur domain we will study in this paper.
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3. Relations between O(M), D(M) and P(M)

When a statement deals with the Masur domain, it means that we have assumed that M
is a compression body but neither a solid torus nor an I-bundle over a closed surface.

Lemma 3.1. The set O is a subset of D(M).

Proof. Let A € D(M) be a measured geodes1c lamination. We will show, using the
following lemma of [Ota88], that A & O.

Lemma 3.2 ([Ota88]). Let E be an essential annulus in a large compression body M;
then there is a projective measured geodesic lamination y € M’ with support lying in'

dE.

Proof. Since [Ota88] is not published, we will write the details of the proof. The
boundary of 0M has only one compressible component d,M called the exterior bound- |

ary. Let us choose a complete hyperbolic metric on .M.

Claim 3.3. Let ¢ C 3,M be a simple closed curve that is disjoint from one non separat- .
ing meridian or from two separating meridians. Then there is a projective measured ;

eodesic lamination p € M’ whose support is c.
8 M pp

Proof. Let us first consider that there is a non separating meridian m disjoint from c. ;

!
s

Let D be an essential disc bounded by m. Since m does not separate 0M, there is a
sequence of simple closed curves (c;) that approximates c, namely the sequence (c;) *
converges to ¢ in PM L(IM), such that each ¢; intersects m in one point. Consider a

small neighborhood ¥} of DUc; in M. The closure of %/ — dM is an essential disc D;
and the sequence (dD;) converges to ¢ in PML(M).

Let us now assume that there are two disjoint separating meridians m; and my
that do not intersect c. Let Dy and D, be two essential discs bounded by m; and
m respectively. Let N be the closure of the connected component of M — (D L D)
whose boundary contains c¢. If N intersects D; and D;, we can approximate ¢ by a
sequence of arcs k; joining my to my. Let 9/, be a small neighborhood of Dy Uk; UD;.

The closure of 3%/, — dM is an essential disc A; and the sequence (dA;) converges to ¢
in PML(0M).

If N intersects only one disc Dy or Dy, by considering an arc in dM — N join-
ing D to D, we can construct an essential disc D3 such that one component of
M - (D UD3) or of M — (D, UD3) contains ¢ and intersects Dy and D3 or D, and
D3. Thus we are in the previous case and we can conclude as above. O

To prove Lemma 3.2, it remains to consider the case where there is at most one
meridian disjoint from E and this meridian separates M.

PR TR v W AR A
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|et us assume that the two components of dE are not homotopic in oM. Since M is
a large compression body, F intersects a meridian m. Let us choose an orientation for
! and let y: M — M be the Dehn twist along E. The curve y”*(m) is a meridian. The
1estriction of W to M is a Dehn twist along . It follows that the sequence (y"*(m))
fends Lo a projective measured geodesic lamination u € M’ with |u| C JE.

(‘onsider now that there is an annulus E' C M with 0E’ = dE. By cutting M along
an essential disc disjoint from E (if there is one), we can assume that E intersects any
swsential disc in M. Since there is at most one merdidian disjoint from E, the part we
have removed (if there is one) has incompressible boundary (so it is an /-bundle over
i closed surface). The resulting manifold M is still a compression body but it could
e an /-bundle over a closed surface or a solid torus. In particular, M is atoroidal and
I-111" bounds a solid torus T C M. Since the components of dE are isotopic on dM,
cach component of JF represents a non primitive element in 7 (M). 1t follows that
Al can not be an I-bundle over a closed surface. Especially M contains an essential
dise D and D intersects JE transversely. Choose D so that the geometric intersection
hetween 0D and OE is minimal in the homotopy class of dD. Let D’ be an outermost
component of D — E, namely the closure of D' is bounded by an arc k C dD — 0E and
by an arc ¥’ C E. If ¥’ is homotopic in E relatively to its endpoints to an arc lying in
JI:. then D’ is homotopic to an essential disc that is disjoint from E. This contradicts
the fact that OF intersects any essential disc. So &’ is not homotopic in E relatively to
its endpoints to an arc lying in dE. Consider a small neighborhood ¥ of EUD’. The
closure of Y — OM is the union of an essential annulus parallel to E and a properly
cmbedded disc A that does not intersect dE. The manifold W =T U 9/ is a solid torus
and the closure of 9W — oM is A'. Since A’ does not intersect 9E, it is not an essential
disc. So A is homotopic to a disc A’ C 0M. The sphere AUA" C M bounds a ball
and M is the union of W and this ball. It follows that M is a solid torus. Recalling
that we may have cut M along an essential disc, we conclude that M was originally
the connected sum along the boundary of a solid torus and an /-bundle over a closed
surface. This contradicts our assumption that M is a large compression body. O

Let A be a measured geodesic lamination such that A ¢ D(M). Then there is a
sequence of essential discs or annuli E, C M such that i(A,dE,) — 0. We will show
that A ¢ O.

We will first assume that M is a large compression body. By Lemma 3.2, there
is a sequence of multi-curves (e,) such that e, C JE, and that e, € M’. Let € >0
and let €e, be the weighted multi-curve obtained by endowing each leaf of e, with a
Dirac mass with weight €. Up to extracting a subsequence, there is a sequence (€,)
converging to 0 such that the sequence (€,e,) converges to some measured geodesic
lamination o. Since €,¢e, € M’ for any n, then o. € M’. Since we have €, — 0 and
i(A,en) =0, we have i(A, &) = 0 hence A & O.
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Let us assume now that M is a small compression body. By the proof of Lemma
3.2, for each n, either E, is disjoint from an essential disc or there is a projective
measured geodesic lamination p € M’ with support lying in dE,,. Especially, for any
n, there is u, € M’ with i(y,,dE,) = 0. Furthermore, we can choose the u, such
that a subsequence of (u,) converges in M L{dM) to a measured geodesic lamination
e M. Lete, C0E,Nd.M be a simple closed curve and choose €, — 0 such that
the sequence (€,e,} converges to some measured geodesic lamination 0.. We have
then i(a,u) = 0 and i(at,A) = 0 hence A & O.

Thus we have shown that if A & D(M), then A & O. d

The opposite is not true but we have the following:

Lemma 3.4. Let A € D(M) be an arational measured geodesic lamination; then A
lies in O.

Proof. Let us assume the contrary.

If M is a large compression body, there is u € M’ such that i(u, ) = 0. It follows
from the assumption that A is arational that A and y share the same support |u|. Since
u € M, there is a sequence of meridians ¢, C oM and a sequence €, — 0 such that
€,¢, converges to u in the topology of M L(0M). Up to extracting a subsequence, (c,)
converges in the Hausdorff topology to a geodesic lamination L and we have [y C L.
By Casson’s criterion (cf. [Ota88], [Lec02, Theorem B.1] or [Lec04b]), L contains a
homoclinic leaf /. Since |u| C L is the support of A, / does not intersect A transversely.
This contradicts Lemma 3.6 below.

If M is a small compression body, there are y € M’ and o € M L(d.M) such that
i(u,0) = i{o,,A) = 0. Since A is arational, A, o and p share the same support. Using
the fact that A and u have the same support, we can finish the proof in the same way
as in the case of a large compression body. a

In [Lec02] (see also [Lec04b]), one studied the subset P(M) of M L(0M) defined
as follows. Let A € M L(dM) be a measured geodesic lamination; then A € P(M) if
and only if:

(a) no closed leaf of A has a weight greater than w;
(b) 3n > 0 such that, for any essential annulus E, i(dE, L) > 1;
(¢) i(A,0D) > 27 for any essential disc D.

Let p: (M) - Isom(H*) be a geometrically finite representation nnitormizing M
and let /1 be an isotopy class of homeomorphisms M N(p)*” hometopic 1o the iden-
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b: GF (M) — M L(IM) which to a pair (p, ) associates the preimage under 4 of the
hending measured geodesic lamination of N(p), let us call this map the bending map.
It is shown in [BO] and [Lec02] that P(M) is the image of b.

In [Lec02], it was proved that a measured geodesic lamination lying in P(M) in-
tersects transversely all the homoclinic leaves and all the annular laminations. In order
10 get the same property for the laminations lying in D(M), we will discuss the rela-
tionships between P(M) and D(M).

We clearly have P(M) C D(M), conversely, we have:

l.emma 3.5. Let A € D(M) be a measured geodesic lamination not satisfying con-
dition (=), then there is a measured geodesic lamination o. € P(M) with the same
support as A.

I"oof. Since A € D(M), 3n > 0 such that i(dE,A) > 1 for any essential annulus or
disc E. Let %157\. be thc measured geodesic lamination obtained by multiplying the
mcasure A by Zn—"; then Zn—"%. satisfies the properties b) and c) above. Let A(P) be the
union of the leaves of Zn—"?L with a weight greater than © and let o be the measured
yeodesic lamination obtained from Zn—”?\. by decreasing the weight of the leaves of AP)
to T. This measured geodesic lamination o satisfies a) and b), let us show that it
sitisfies also ¢).

Let D C M be an essential disc; then i(zn—nk, aD) > 2m. If 3D does not intersect A(P)
iransversely, we have i(A',0D) = i(zn—"}., aD) > 2m.

If 3D intersects A(P) in one point x, let ¢ be the leaf of A(”) containing x. Let V be
i small neighborhood of clUD; ¥ is a solid torus. Let D' be the closure of 9% — oM, D’
v a disc properly cmbedded in M not intcrsecting AP hence
o' o) = (oD, Zn—"?L). If D' is not an essential disc, then dD’ bounds a disc
1" < oM. Since M is irreducible, D' UD” bounds a ball BC M and M = BU YV
iv v solid torus. By assumption, M is not a solid torus hence 1) is an essential disc and
ity %I’EK) > 2. By construction, we have i(dD', ) < 2(i(dD, o) — 1), therefore we

; 2n

i(al;’,a) b= 1(30’2—7»)

have i(0D, o) > +7 > 27,

If 8D intersects A®) in two points x and y, we have
i, 0D) = 2x + i(zn—"}. — AP 3D). Hence we just have to show that
(A AP 3D) > 0. Assuming the contrary, we have AN 9D = {x,y}. If x and y lie in
, let ¥ be a small ncighborhood of cUd U D;
1" is an I-bundle over a pair of pants. The closure of 0V — 0M is an annulus with

two distinct leaves ¢ ¢ |A] and d C |A

boundary not intersecting A By condition ), this annulus is not essential. Tt follows

that M is an I-bundle over oopane ol pants £ and that [A; lies in a section of the bundle

e Al
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Let ¥ be a small neighborhood of ¢U D; it is again an /-bundle over a pair of pants,
If the tangents vectors rde]x and %ly do not point to the same side of dD, the closure
of 87 — 0M is the union of two annuli with boundaries not intersecting A. This yields

the same contradiction as above.

Next let us consider the case where %IX and %ly point to the same side of dD.
Let k be a connected component of ¢ — {x,y} and let 7’ be a small neighborhood of
kU D; the closure of 37” — oM is an essential disc D’. Replacing D by D', we are in

the situation of the previous paragraph and get the same contradiction.
1f 9D and A(P) intersect each other in more than 2 points, i(A,0D) > 3. |
Combining Lemma 3.5 and results of {Lec02] (sec also [Lec04b]) we get the fol-
lowing:
Lemma 3.6. A measured geodesic lamination A € D(M) not satisfying condition (—)

has the following property:

A intersects transversely any annular lamination and any geodesic lamination con-
taining a homoclinic leaf.

Remark 3.7. Let us add a few comments about the case where A satisfies condition
(—). Any homoclinic leaf / intersects A at least once. If an annular geodesic lamina-

tion A does not intersect A transversely, then A contains two disjoint half-leaves both

spiraling in the same direction toward the same leaf of A. This can not happen for a

fvbe o Tm

Hausdorff limit of multi-curves. Therefore A has the property above if we consider |

only annular laminations that are Hausdorff limits of multi-curves.

4. Topological properties of D(M)

Lemma 4.1. The set D(M) is an open set.

Proof. Let us assume the contrary. Then there are A € D(M) and a sequence of mea-

sured geodesic laminations A, & D(M) converging to A. Therefore there is a sequence |

of essential discs or annuli E, such that i(A,,0E,) — 0. Let us extract a subsequence
such that dE, converge in the Hausdorff topology to a geodesic lamination A. Then
A does not intersect A transversely. By [Lec02] (see also [Lec0O4b]) either A contains
a homoclinic leaf ([Lec02, Theorem B1]) or A is annular ([Lec02, Lemma C2]), both
contradicting Lemma 3.6. 1

A train track T carrying a measured geodesic lamination is complete if it is not a
subtrack of a train track carrying a measured geodesic lamination (cf. [PH92j).
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Any measured geodesic lamination A is carried by some (maybe many) complete
tann track T. The weight system on a complete train track gives rise to a coordinate
system for a simplex of the piecewise lincar manifold M £(dM). The rational depth
ol 4 measured geodesic lamination A is the dimension of the rational vector space
ol lincar functions with rational cocfficients (from the simplex previously defined to
Ii) vanishing on the coordinates of A. Let us denote by I(0M) the set of measured
peadesic laminations with rational depth equal to 0. If a measured geodesic lamination
A lies in 1, then A is arational (cf. [Thu80, Proposition 9.5.12]).The set I is a dense
ipen subset of M L{OM) (cf. [Thu&0, chap 9]).

Proposition 4.2. The set D(M) is path-connected.

Moof. Let A, Ay € D(M); since [ is a dense subset of M L(dM) and since D(M)
i open, there are o and o € D(M)N T such that A; is connected to o; by a path
ko D(M).

Since o; ¢ D(M) there is 1 > 0 such that i(a;,0E) > 1 for any essential disc or
annulus £ C M. Since o; € [, it has no closed leal and by the proof of Lemma 3.5,
;I” o; € P(M). Let CC(M) C GF (M) be the set of hyperbolic metrics uniformizing M
and having only rank 2 cusps; by results of Ahlfors-Bers ([Ber60}), CC(M) is home-
omorphic to the Cartesian product of the Teichmiiller spaces of the connected compo-
nents of dy<oM, indeed CC(M) is path-connected. Let (M) be the set of measured
peodesic laminations lying in (M) and having no closed leaves with weight w. By
[1.cc02] (see also [Lec04b]) B, (M) is the image of CC(M) under the bending map.
By |KS95] and {Bon98], the bending map is continuous on CC(M) hence P,.(M) is
path-connected. Since Zn—’taj has no closed leaf, znaj € P,.(M). Therefore there is a
path o2 [0,17 — P(M) C D(M) such that o(0) = 2"0(; and that o(1) = ——(xz Let
K, 0 0.1] — D(M) be the path defined by x;(r) = (l -1 +tzn—’t)aj. The union of the
paths k;, x; for j - 1,2 and of the path ([0, 1}) is a path lying in D(M) joining A, to
)\,).

Thus we get that D(M) is path-connected. o

Let us discuss now the connectedness of O. Assume A, A € O and follow the
proof of Proposition 4.2 replacing (M) by O. The only problem is that we do not
have P(M) C O(M). But by Lemmas 3.5 and 3.4, if a measured geodesic lamination
lying in P(M) is arationnal, it lics in O. So if we can choose o so that o(r) is arational
forany ¢ € [0, 11, we have a([0, 1]) € O(M). Especially if the set of arational measured
vscodesic laminations is path-connected, the set O is path-connected.
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5. Pleated surfaces

Theorem 5.1. Let M be an orientable 3-manifold, let p : 1y (M) — Isom(H?) be a
geometrically finite representation uniformizing N and having only rank 2 maximal -
parabolic subgroups and let h: N = H?/p(m,(M)) — int(M) be a homeomorphism;

then any measured geodesic lamination \ € ‘D(M) is realized by a pleated surface in |

N.

Proof. If M is a compression body and A is arational, then A lies in the Masur domain
and the theorem has been proved by Otal ([Ota88]). If M is boundary irreducible, then
any geodesic lamination is rcalized in N (see [CEG87, chap. 5]). In order to prove our
general statement, we will follow the main lines of Otal’s proof.

Lemma 5.2. Let A € D(M) be a weighted multi-curve, then \ is realized by a pleated
surface in N. '

Proof. Let us extend |A] to a geodesic lamination L (namely |A| C L) such that all
the components of dM — L are triangles and that L has finitely many leaves. Since 1
A € D(M) and since p has only rank 2 cusps, any closed leaf of L is homotopic to
a closed geodesic in N. Let S C M be a properly embedded surface homeomorphic
and homotopic to dM and let us change the restriction of / to S by a homotopy in !

order to get a map f : S — N mapping the closed leaves of L into closed geodesics.
For cach connccted component of S, let us lift this to a map f : H? — H®; this map
f defines a map from the endpoints of the lifts of the leaves of L to L,. Furthermore,
if [ € H? is a lift of a leaf of L, by Lemma 3.6, the images of its two endpoints are
distincts. Following [CEG87, Theorem 5.3.6], this allows us to construct a pleated
surface realizing L. d

Now let us consider the general case. Let A € D(M) be a measured geodesic lami-
nation; let A, be a sequence of weighted multi-curves such that A,, -— A in M L(IM)
and that |A,j — |A| in the Hausdorff topology. Since D(M) is open, A, ¢ D(M) for
large n. Let y be a weighted multi-curve with a maximal number of leaves such that
i(A,y) = 0; since A, € D(M) for large n, A, U7y is also a measured geodesic lamina-
tion lying in D(M). By the previous lemma, A, Uy is realized by a pleated surface
fn S — N. We will show that a subsequence of (f,) converges to a pleated surfaces
realizing A.

Let us denote by s,, the metric on § induced by the map f, : § — N and let us show
that (s,) contains a converging subsequence. First we will prove that the sequence of
metrics (sy) is bounded in the modular space. By Mumford’s Lemma, it is sufficient
to prove that the injectivity radius of s, is bounded from below.
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Claim 5.3, Let (¢,) be a sequence of curves such that Iy, (¢,) — O and let us extract a
wihsequence (c,) which converges in the Hausdorff topology to a geodesic lamination
(' then C does not intersects A transversely.

P'roof. Let assume the contrary and let ¢ be a lcaf of C intersecting A transversely.
Sinee A 1s recurrent, we can consider a segment k = k([0, 1]) of |A| such that kNC = dk
mndl that 2k (0) is close (for some reference metric on ) to —2(1) and a short segment
w ol ¢ joining the ends of & so that we get a closed curve d = kUK. Since A, — A and
v, = C, there exist arcs k, C A, and K, C ¢, near k and ¥ such that d,, =k, U, is
homotopic on S to d. Since Is, (¢,) — 0, ¢, is the core of a very deep Margulis tube
and £, (k,) —> oo. Since I, (x,) < I, (cn) -~— 0 and f,(k,) C fn(Ar) is a geodesic arc,
[uldy) = fu(k,UK,) is a quasi-geodesic and is very close to the geodesic d} of N in its
homotopy class. This implies that Iy (d,) - — o but d, is homotopic to d so d, = d*
riving the expected contradiction. 0

Let (c,) be a sequence of curves such that [ (c,) — 0. If we can extract a con-
verging (in the Hausdorff topology) subsequence such that all the ¢, are meridians
then, by Casson’s criterion (cf. [Ota88], [Lec02, Theorem B.1]), the limit contains
a homoclinic leaf. By Lemma 3.6 such a homoclinic leaf intersects A transverscly
contradicting Claim 5.3. This implies that for large n, the ¢, are not meridians. If we
van extract a converging subsequence such that all the ¢, are parabolic curves, then
i(cn,A) > 1 for any n, leading to the same contradiction.

It follows that, for large r, each f,(c,) is homotopic to a closed geodesic c}; of N.
But this would mean that [,(c};) — 0 and since N is geometrically finite, there is a
uniform lower bound for the length of a closed geodesic. We get then from Mumford’s
| .emma ([CEG87, Proposition 3.2.13]):

Claim 5.4. The sequence (s,) is bounded in the moduli space.

Let us now show that (s,) is bounded in the Teichmiiller space. By the previous
claim, there exists a sequence (¢,) of diffeomorphisms such that, up to extracting a
subsequence, (@s,) converges in the Teichmiiller space to a metric s},. By construc-
tion lgss, (0, 1(Y)) = s, (¥) = Ip(y), therefore the s_-length of the multi-curve ¢, (Y)
is bounded. This implies that we can choose some ng and a subsequence such that any
diffeomorphism (@, ! o ¢,,) preserves this multi-curve, component by component.

For large n, A, intersects transversely all the parabolic curves. Therefore A, in-
tersects the thick part of N which is compact. It follows that all the f,(S) interscct
the same compact subset of N. Using Ascoli’s theorem we can choose a subsequence
of (¢,) such that the sequence of pleated surfaces (f, o @,) converges. This implies
that the maps f;, o @, are homotopic for n sufficiently large. Thus, up to changing



ny, the diffeomorphisms , = @, ' o @,, are homotopic in M to the identity. Let R
be a complementary region of . If the map i* : 7t; (R) — m; (M) induced by the in-
clusion is injective, then by [Wal68], . is isotopic to the identity in S. If the map
i* : 7 (R) -» = (M) is not injective, R contains a meridian, Since A € D(M), R must
contain a component A’ of A, and since y has a maximal number of components, A/ must
be arational in R. Let us call r, the restriction of s, to R and suppose that the sequence
(rx) is not bounded in Teichmiiller space. Since the length of dR is bounded, we can
use Thurston’s compactification and assume that (r,) tends to a measured geodesic
lamination v. Since I, (AsNR) =lo(AnNR) <1, (AnOR) — 1, (A), i(v,A) = 0 and
v and A’ share the same support.

Let m C R be a meridian. Then m, = y,(m) is homotopic to m and therefore (m,) .
is a sequence of meridians. We can assume that (m,) converges in PML to a projec- |

tive measured Jamination represented by p. Since (ys,) converges, then [, (m,) = .
hyzs, (W7 1 (my)) = byss, (m) converges and therefore i(u,v) = 0. Since v and A’ have '

the same support and since A’ is arational in R, this implies that 4 and A’ have the same
support. But Casson’s criterion (c.f. [Ota88], [1.ec02, Theorem B.1]) says that there
exists a simple geodesic I C R which is homoclinic and does not intersect u trans-
versely. This contradicts Lemma 3.6 and proves that the sequence (r,) is bounded.

This applies to each component of dM — . It follows that we can choose the y,
such that each one is the composition of Dehn twists along the leaves of y. We have
seen above that the Y, are homotopic to the identity; by [Wal68], each y, can be

extended to a homeomorphism of the whole manifold M. Let ¥ C § be a small neigh-
bourhood of ¥; since A C D(M), V does not contain the boundary of any essential

annulus. It follows then from [Joh79, Proposition 27.1] that, up to isotopy, each y,
has finite order. Since the \,, are compositions of Dehn twists along disjoint curves,
they can not have finite order except when they are isotopic to the identity. We get from
[CEG87] that a subsequence of (f,) converges to a pleated surface realizing A. a

Let f: S — N be a pleated surface realizing a geodesic lamination L. Let P(N) be
the tangent line bundle of N. We define a map Pf from L to P(N) by mapping a point
x € L to the direction of the unit vector tangent to f(L) at f(x).

The following injectivity theorem has been proved by Thurston ([Thu86]) when
M is boundary irreducible and by Otal ([Ota88]) when M is a compression body and
A€ 0.

Theorem 5.5. Let A € D(M) be a measured geodesic lamination not satisfying the
condition (—), let L be a geodesic lamination containing the support of A and let
f :0M — N be a pleated surface realizing L. Then the map Pf : L - P(N) is a
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Imeomorphism into its image.

Ionf. Since the map f reduces the length, it is easy to see that Pf is a continuous
mnp and since L is compact, we need only to show that Pf is injective.

l.et us assume the contrary, there are two points # and v C L such that
Ff(n) = PF(v); let f:H2 — H3 be a lift of f and let 4 and ¥ be lifts of u and v
wich that P£ () = PF($). Since f is an isometry on the preimage of L, it is injective
on cach leaf of the preimage of L. Therefore & and ¥ lie in two different leaves Iy and
I of the preimage of L. Since Pf(a) = Pf(9), then f(§y) = f(&,). It follows that L
is an annular lamination and since L does not intersect A € D(M) transversely, this
contradicts Lemma 3.6. a

Remark 5.6, If A satisfies the condition (—), the same is true for A but not for any
peodesic lamination containing A.

6. Action on R-trees

We will prove the following:

I'roposition 6.1. Let T be a real tree, let T (M) x T — T be a small minimal action
and let A € D(M) be a measured geodesic geodesic lamination. Then at least one
connected component of A is realized in ‘T.

Proof. Let us first notice that this result has been proved by G. Kleineidam and J. Souto
(|KS02] and [KS03]) when M is a compression body and A lies in the Masur domain.
‘T'he general case necd just a rcorganization of the proof of [Lec02, Proposition 6].
tHere we will sketch the proof which consists essentially in putting together ideas of
{BO] and of [KS02].

If A satisfies the condition (—) then the elements of mt; (M) corresponding to the
lcaves of A form a generating subset of &) (M). In this case Proposition 6.1 is a straight-
forward consequence of [MS84].

Let us assume that A does not satisfies the condition (—). For ¢ € m;(M) let us
denote by 87 (c) the distance of translation of ¢ on 7. Let S be a connected component
of oM with () < 0; the inclusion i, : 7 (S) — 7, (M) provides us with an action of
7, (S) on 7. By [MO93], there exist a measured geodcsic lamination f € M L(S) and
a morphism ¢ : 73 — Zs from the dual tree of B to the minimal subtree of 7 that is
invariant under the action of 7;(S). Since the action of m;(S) is not a priori small,
¢ is not, a priori, an isomorphism and there might be many laminations B with this
property. We will consider such a lamination 8 which is adapted to our problem.
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Let (A,) be a sequence of weighted multi-curves converging to A in M L(0M)
such that (|A,|) converges to |A| in the Hausdorff topology. For each irrational sub-
lamination A’ of A let us denote by S(A!) the surface embraced by |A’[. For n large
enough such that |A,| docs not intersect S()) transversely, let us add simple closed
curves 1o &'S(A) U|A,| in order to obtain a multi-curve L, whose complementary
regions are pairs of pants. By [MO93], there are measured geodesic laminations
B, € M L(0M) and equivariant morphisms ¢, : 73, — T such that for any lcaf I,
of L,, either &;(l,) > 0 and the restriction of ¢, to the axis of /, is an isometry or
&7 (1,) =: 0 and i(l,,Bn) = 0, see [Lec02, §4.1] for more details.

Extract a subsequence such that (|B,|) converges to a geodesic lamination B in
the Hausdorff topology. The first step of the proof is to show that B intersects |A|
transversely, this will allow us to follow [KS02] by using a realization of a train track
carrying A to prove the proposition.

Lemma 6.2. The geodesic lamination B intersects |A| transversely.

Proof. The proof is done by contradiction; let us assume that |A| does not intersect B
transversely.

If B is a multi-curve, then for large n, B,| = B and B, does not intersect A trans-
versely. By the definition of D(M), a small neighbourhood of B does not contain any
essential disk, annulus or Moebius band. By [MS84, Corollary IV 1.3], this implies
that the action of ; (M) fixes a point of 7. This would contradict the assumption that
this action is minimal.

Let us now consider the case where B is not a multi-curve. The first step in this
case is to prove that S(B) is incompressible for any connected component B’ of B.
This will imply that a subsequence of (|B.|) is constant.

Claim 6.3. If B does not intersect |\ transversely, then for any connected component
B of B, the surface S(B') is incompressible.

Proof. Since we have assumed that B does not intersect [A| transversely, if B is a
closed curve, the claim follows from the definition of D(M).

Let B' be a component of B which is not a closed curve and let us assume that
S(B') contains a meridian. It follows from the ideas of [KS02], that S(B¢) contains a
homoclinic leaf # which does not interscct B' transversely (see [Lec02, Lemma 4.3]
for details). Since we have assumed that B does not intersect A transversely, then
[A|NS(B’) C B'. Especially, h does not intersect A transversely, contradicting Lemma
3.6. (|

Let us explain how Claim 6.3 implies that for large n the support of B, does not
depend on n. Let B’ be a connected component of B; if B’ is a closed leaf then for
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lmpe n, B C |By]. Let us next assume that B is not a closed leaf; by claim 6.3, S(B)
i~ mcompressible, hence the action of i, (7 (S(B)) on its minimal subtree Tggiy C
I is small. Since B docs not intersect &S(B'), for large n, B, does not intersect
J'S(H'). 1t follows that for each component d of 8'S(B), the action of i.(d) has a
fised point in Tggy. This allows us to apply Skora’s theorem [Sko90] which says that
%  B.NS(B) is dual to the action of i\ (m;(S(B')) on Typ). Doing this for each
component of B, we obtain that, for large n, |B,| does not depend on n. Let us endow
1t with the measure of one of the B, and let us call p the measured geodesic lamination
thus obtained.

‘The last step in the proof of Lemma 6.2 is to show that |B| = B is annular. Since
we have assumed that B does not intersect |A| transversely, this will contradict the fact
that A € D(M) (Lemma 3.6).

Claim 6.4. The measured geodesic lamination B is annular

I’roof. By hypothesis B does not intersect A transversely hence S(B) N |A| C |B].

Since S(B) is incompressible, we might consider a characteristic submanifold W
ol (M,S(B)) (cf. [Joh79] and [JS79]). Such a characteristic submanifold is a union
ol cssential I-bundles and Seifert fibered manifolds such that any essential annulus in
(M.5(B)) can be homotoped in W. For each component X of oM — S(B), i..(X) fixes a
point in 7, hence by [Thu] (see also [MS88, theorem IV 1.2]) W can be isotoped in
such a way that we have B ¢ WNoM.

We are considering the case where P is not a multi-curve, therefore it contains an
irrational sublamination B'. Since the Seifert fibered manifolds composing W intersect
OM in annuli, |B!| lies in a component W! of W which is an essential /-bundle over a
compact surface F: W' = F x I. Let us denote by p : F x 8] — F the projection along
the fibers. By Skora’s thcorem [Sko90], for any component £ of W! NoM, ZNP is
dual to the action of i..(m)(S)) on Zz. Since this action factorizes through the action
of T (W) = n;(F), there is a measured geodesic lamination ' € M L(F) such that
BNow! > p~1(B’). Since the lamination p~!(B') is annular, B is annular (compare
with [BO, Lemma 14]). 0

This claim concludes the proof of Lemma 6.2. 0

Let us now complete the proof of Proposition 6.1, Let A’ be a connected component
of A that intersects B transversely. Let us denote by T, : H? — 1, the projection
associated to the dual tree of B, (as defined in §2.2). Since B intersects A' transversely,
the construction in [Ota88, chap 3] yields a train track t’ such that for large #, Tg, is a
weak realization of t* in 7 .
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Let I, be a component of L, N S(A'). Up to extracting a subsequence, /, converge
in the Hausdorff topology to a geodesic lamination L' C S(A}) that does not intersect
A transversely (by the choice of L,). Therefore |Ai| C L'. If up to extracting a subse-
quence, i, (l,) has a fixed point in T; then i(B,,1,) == 0. Letting » tend to oo, we would
get that B does not intersect |A/| transversely, contradicting our choice of A%

It follows from the previous paragraph that the restriction of ¢, to I, is an isome-
try. For large n, each branch of 1 intersects transversely a lift of /,,. The fact that the
restriction of ¢, to the axis of I, is an isometry implies that ¢, o g is a weak realiza-
tion of T in T (compare with [KS02, Lemma 11]). By [Ota88] this map ¢, o &g, is
homotopic to a realization of Af in 7. O

Let p, : %1 (M) — Isom(H?) be a sequence of representations containing no con-
verging subscquence; in [MS84], J. Morgan and P. Shalen described a way to associate -
a small minimal action of m; (M) on an R-tree to some subsequence of (p,). This can .
be stated in the following way: the sequence (p,)} tends to the action 7 (M) ~ T °
in the sense of Morgan and Shalen if there is a sequence €, —— O such that for any :
a € 1 (M), €,8,, (a) — 8:(a). In [Ota94], J.-P. Otal described, in the special casc of
handlebodies, the behavior of the length of measured geodesic laminations which are
realized in 7. A careful look at the proof yields the following statement.

Theorem 6.5 (Continuity Theorem [Ota94]). Let (p,) be a sequence of discrete and -
faithful representations of m|{M) tending in the sense of Morgan and Shalen to a
small minimal action of m\ (M) on an R-tree T. Let €, — O be such that Vg € mi(M), ;
€18y, (8) — 87(g) and let L C OM be a geodesic lamination which is realized in T. |
Then there exists a neighbourhood V(L) of L, and constants K,ny such that for any

simple closed curve ¢ C V(L) and for any n > ny, '

enlp, (c") > Kl ).
In the preceding statement so is a fixed complete hyperbolic metric on dy<oM.
Using this and Proposition 6.1, we get the following

Theorem 6.6. Let p, be a sequence of faithful representations of ®1(M) such that
H3 /pn(m1(M)) is homeomorphic to int(M), let . € D(M) and let \,, be a sequence of
measured geodesic laminations such that:

~ the sequence A, converges to A in M L{OM);
— the sequence |A,| converges to |\ in the Hausdorff topology;

— the sequence I, (A,) is bounded.
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then (py,) contains a converging subsequence,

I'toof. Approximating cach A, by weighted multi-curves, we produce a sequence of
multi-curves also satisfying the hypothesis of the theorem. Let us assume that (py,)
does not contain an algebraically converging subsequence, then by [MS84], a subse-
sience of (py) tends to a small minimal action of 73 (M) on an R-tree 7. By Proposi-
fion 6.1, A is realized in 7" and it follows from Theorem 6.5 that J,,, (,) — oo giving
us the desired contradiction. 0

Remark 6.7. When M is an I-bundle over a closed surface, the proof of this theorem
can be found in [Thu86]; this result has been extended to manifolds with incompress-
ible boundary in [Ohs89]. When M is a compression body and A € O, this result has
lwen proved in [KS02] and [KS03].

7. Conclusion

T complete this paper, we should also mention the action of Mod(M) on D(M). The
(oliowing result is proved in |LecO4b] using some properness properties of the bending
map. The proof of thesc properties is long and is the subject of [LecO4a]. Here we
will only give an outline of the proof, the reader interested in a complete proof should
refer to [Lec04b] or to [Lec04a].

Propesition 7.1. If M is not a genus 2 handlebody, the action of Mod(M) on D(M)
is properly discontinuous.

Outline of the proof. Here Mod(M) is the group of isotopy classes of diffeomorphisms
M—-M.

Let us assume that Proposition 7.1 is not true. There are measured geodesic lami-
nations A € D(M), (A,) € D(M) and diffeomorphisms (¢,) € Mod(M) such that (X,)
and (9, (An)) converge 1o A in M L(dM) and that for any n £ m, ¢, is not isotopic to
du. Since A € D(M), In > 0 such that i(X,dD) > 1 for any essential disc D. Let :’n—“?t
he the measured geodesic lamination obtained by rescaling the measure of A by %
Let A’ be a compact leaf of Zn—“?L with a weight greater than or equal to T; if, up to ex-
tracting a subsequence, A’ is a compact leaf of all the measured geodesic laminations
An, let us replace, in Zn—”?L and in all 27175%,,, A by the same leaf with weight 7. Let A, and
A, be the measured geodesic laminations obtained by doing the same for all the leaves
of Zn—"?L with a weight greater than 7; let us remark that A, may have some leaves with
a weight greater than 7 but that for n large enough, the compact leaves of A/, have a
weight less than or equal to 7. Let us also remark that (A},) and (¢,(A},)) converge to
AL, in M L(0M). By Lemma 3.5, A, and A/, satisfy the conditions b), ¢). For n large



cnough, the A, also satisfy the condition a) hence, by {Lec02] (see also |Lec04b}),
there is a geometrically finite metric p, on the interior of M whose bending measured
lamination is (A},); here a geometrically finite metric is a geometrically finite repre-
sentation p : 7 (M) — Isom(IH?) together with an isotopy class of homeomorphisms
M — N*¢P(p). The bending measured geodesic lamination of ¢.(p,) is ¢,(A;,) and by
construction ¢, (A],) — AL,. It is at this point that we need the properness property of
the bending map mentioned before the statement of Proposition 7.1: it follows from
[Lec02] that there is a subsequence such that (p,) and (d,.(p,)) converge to some
geometrically finite metrics.

The conclusion comes from the fact that the action of Mod(M) on the space of

isotopy classes of geometrically finite metrics (see [LecO4a] for a definition) on the

interior of M is properly discontinuous. This fact can be shown by using the arguments
of the proof of the properness properties mentioned above (cf. [Lec04a]). 0

As has been mentioned throughout this paper, almost all the above resuits have
been already proved when A € O. In an attempt to convince the reader of the interest
of this paper we will give some examples of laminations lying in 9D but not in O.

Let M be an I-bundie over a compact surface S with boundary; this manifold M is a
handlebody. Let (y.t) € M L(S) be a pair of binding measured geodesic laminations,
namely for any measured geodesic lamination P € ML(S),
i(B,7) +i(B,o) > 0. Such a pair of binding measured geodesic laminations has the
following property: 3n > 0 such that i(c,y) 4- i(c, ) > m for any closed curve ¢ C S.
Let us defined a measured geodesic lamination A € M L(dM) as follows: on one com-

ponent {0} x S of 9/ x S, AN ({0} x S) is v, on the other component, AN ({1} x S) is |

o and on the remaining part / x 95 of the boundary, AN (I x 9S) is {p} x aS for some
p €]0, 1] endowed with a Dirac mass 7.

For any essential disc D C M, dD intersects {p} X dS, hence i(dD,A) > 1. If A
is an essential annulus, either dA intersects {p} x 9S and i(dA,A) > 1, or A can be
homotoped to a vertical annulus ¢ x I C I x § with ¢ being a simple closed curve. In
the second case, we have i(dA,A) = i(c,Y) +i(c,@) > 1. We have thus proved that
A € D(M). By [KS02] the measured geodesic laminations AN {0} x Sand AN {1} x §
have the same supports as some measured laminations lying in M’ hence A ¢ O.
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Thurston’s bending measure conjecture for once
punctured torus groups
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Abstract

We prove Thurston’s bending measure conjecture for quasifuchsian once punc-
tured torus groups. The conjecture states that the bending measures of the two
components of the convex hull boundary uniquely determine the group.

. Introduction

I'urston conjectured that a convex hyperbolic structure on a 3-manifold with bound-
aty is uniquely determined by the bending measure on the boundary. In this paper
we prove the conjecture in one of the simplest possible examples, namely when the
minifold is an interval bundle over a once punctured torus.

In [KS04], the author and L. Keen studied the convex hull boundary of this class of
hyperbolic 3-manifolds in great detail, without however addressing Thurston’s conjec-
ture per se. Since the question came up several times during the Newton Institute pro-
pramme, it seemed worthwhile to investigate, even though the once punctured torus is
a very special case. Given the current state of knowledge, the basic idea of the present
proof is rather simple. It does however build on a large number of rather deep results
trom [KS04] and elsewhere.

Let G C PSL(2,C) be quasifuchsian, so that the corresponding quotient 3-manifold
.i'/G is an interval bundle over a surface S. The boundary of the convex core of
1*/G has two components dC* each of which are pleated surfaces bent along mea-
sured laminations B* on S called the bending measures. The claim of the bending
measure conjecture is that Bt uniquely determine G, up to conjugation in PSL(2,C).
I the underlying supports of B* are closed curves, then a result of Bonahon and
Otal [BO] (which applies to general Kleinian groups not just the quasifuchsian case
under discussion here) asserts this is indeed the case. They also gave necessary and
sufticient conditions for existence, but not uniqueness, of quasifuchsian groups for
which the bending measurcs B+ are any given pair of bending measures g, v. If S is
a once punctured torus, these conditions reduce to i(u,v) > 0 and the proviso that the
weight of any closed curve is less than 7. In a recent preprint [Bon02], Bonahon has



also shown uniqueness for general quasifuchsian groups which are sufficiently close
to being Fuchsian.

The object of [KS04] was to describe the space QF of quasifuchsian groups when,
the surface S is a once punctured torus in terms of the geometry of dC*. This was
done by analysing the pleating planes P(u, V) consisting of all groups whose bending"
laminations lie in a particular pair of projective classes [u, [V}, see Section 2. In place§
of the bending measures, we concentrated on the lengths , and /4, of u and v, Wthhﬁ
can be extended to well-defined holomorphic functions, the complex lengths A, and}z
Av, on QF, see Section 3. We showed, see Theorem 3.1, that A, and Ay are local“
holomorphic coordinates for Q¥ in a neighbourhood of P(u,v) whose restrictions toi
P(u,v) are real valued. In this way we obtained a diffeomorphism of P(u,v) with a}
certain open subset in R* x R*. In particular, the lengths ,, and Jy uniquely determine#
the group. h

Given this background, to prove the bending measure conjecture we just need to‘_
show that, restricted to a given pleating variety, the map from lengths to bending mea-f'
sures is injective. (Here by bending measure, we really mean the scale factors which f
relate B* to a fixed choice of laminations u € [, v € [v].) For rational laminations, as }
mentioned above, we already know by [BO] that angles determine the group. In [CS], 3
again in the context of general Kleinian groups, we showed that for rational bending
laminations the map from bending angles to lengths is injective and moreover that its ‘f'
Jacobian is symmetric and negative definite. If S is a once punctured torus, it follows 3
(see Section 5) that if both bending laminations are rational and if we fix the length of
the bending line on say dC™, then the bending angle on dC " is a monotonic function 3
of the length on dC~. g

Now keeping the bending line on dC* fixed and of fixed length, we take limits §
as the the bending laminations on dC~ converge projectively to an arbitrary irrational §
lamination v. Using the fact that the limit of monotone functions is monotone, we 3
deduce the scale factor of the bending measure on v is still a monotone function of 1
the length Jy. Since this scale factor is real analytic, it is cither strictly monotonic or
consiant; a global geometrical argument rules out constancy. An elaboration of the }
argument in Sections 6 and 7 then allows us relax the requirement that the bending §
lamination and length on dC* remain fixed and prove the conjecture. :

In [KS04] we also showed that the rational pleating varieties for which the supports |
of the bending laminations are simple closed curves are dense. This is not enough for }
the present proof: to compare our monotone functions properly, we need the “limit
pleating theorem” of [KS04|, see Theorem 3.3. This is a deep result closely related
to the “lemme de fermeture” in [BO]. Roughly, it asserts the existence of an alge-
braic limit in P(u,Vv) for any sequence along which the pleating lengths /,, ly remain
bounded.
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A simpler version ol the same analysis, not spelled out here, would show that
the bending angle also uniquely determines the group for the so-called Riley slice of
qohotiky space, see | KS94.

i would like to thank in particular Cyril Lecuire and Pete Storm whose questioning
tixed this problem in my mind.

2. Preliminaries

Ihroughout the paper, S will denote a fixed topological once punctured torus. A rep-
resentation T (S) — PSL(2,C) is called quasifuchsian if the image is geometrically
fmite, torsion free, if the image of a simple loop around the puncture is parabolic, and
il there are no other parabolics. Then in particular the quotient hyperbolic manifold
M i1Y/G is homeomorphic to § x (—1,1). It is Fuchsian if it is quasifuchsian and if
in addition the representation is conjugate to a representation into PSL(2.R). Let F
and Q4 denote the spaces of Fuchsian and quasifuchsian representations respectively,
muodulo conjugation in PSL(2,C). The space Q¥ is a smooth complex manifold of
imension 2, with natural holomorphic structure induced from PSL(2,C).

2.1. Measured laminations

We assume the reader is familiar with geodesic laminations, see for example [ ThugO0,
01196]. A measured lamination p on S consists of a geodesic lamination, called the
support of u and denoted |y, together with a transverse measure, also denoted y. We
topologise the space M L of all measured laminations on S with the topology of weak
convergence of transverse measures, that is, two laminations are close if the measures
(hey assign to any finite set of transversals are close. We write [y] for the projective
class of ue ML(S) and denote the set of projective equivalence classes on S by PML.

l.ct § be the set of simple closed curves on S. We call u € ML rational if y| € S.
(On a more general surface, we say a lamination is rational if its support is a disjoint
union of simple closed curves.) Equivalently, pis rational if 4 = ¢dy wherey€ S, ¢ >0
«and 8y is the measured lamination which assigns unit mass to each intersection with y.
I'te set of all rational measured laminations on S is denoted M Lgy; this set is dense in
ML.

The geometric intersection number i(y,Y) of two geodesics v,Y € S extends to a
jointly continuous function i(u,v) on ML. It is special to the once punctured torus
that i(u,v) > 0 is equivalent to [¢ / [V], moreover (since all laminations on § are
, then [u] — v].

uniquely ergodic) if u,v € ML with |ul = |v

For general surfaces, convergence of laminations in the topology of M L does not
imply Hausdorf{f convergence of their supports. However:
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Lemma 2.1, ([KSO4] Lemma 1) Suppose S is a once punctured torus. Suppose that
u & MLg and that pp, — p in the topology of weak convergence on M L. Then || —
|| in the Hausdorff topology on the set of closed subsets of S.

.i
.

2.2. Lengths

D RE b T

Given a hyperbolic structure on § (associated to a Fuchsian representation of m; (S))§
and y € m;(S), we dcfine the length /y to be the hyperbolic length of the unique geo-|
desic freely homotopic to y. This definition can be extended to general lammauons,ﬁ

4 € ML. The following theorem summarizes the results of [Ker85], Lemma 2.4 and4
[Ker83], Theorem 1: a

.5 4

Proposition 2.2. The function (c8y, p) + cls, (p) from MLy x F to RY extends to a
real analytic function (u, p) — l,(p) from ML X F to R*. If i, € MLq, ptn — p then§
L, (p) — 1. p) uniformly on compact subsets of F. "

We showed in [KS04] that for 4 € ML, the length function [, on ¥ extends to aj}
non-constant holomorphic function 7»,,, called the complex length of u, on Q¥ . Thej
extension is done in such a way that A, = cA,, for ¢ > 0, and such that if 4 = 3, then §
g+~ Au(q) is a well-defined branch of the complex length 2cosh™! Trp(y)/2, where §
p: 71 (S) — PLS(2,C) represents g € QF . 3

Proposition 2.3. ([KS04, Theorem 20]) The family {\,} is uniformly bounded and
equicontinuous on compact subsets of ML x QF, in particular if p, —» n € ML and
gn — g € QF then 7‘-;1" (gn) = Au(q)-

The real part /, of the complex length A, is the lamination length of u in H3/G as 3
defined in [Thu80] p. 9.21.

2.3, The Tharston boundary

We recall the fundamental inequality which governs Thurston’s compatification of ‘;
Teichmiiller space F with projective measured lamination space PML, sec [FLP79] :
Lemme I1.1 and [Thu87] Theorem 2.2:

Proposition 2.4. Suppose 6, — [E] € PML. Then there exist C > 0, d, — oo and ‘
&y — & in ML such that ;

dni(gnaC) < lg(Gn) < dni(grhC) +Cl€(60)

foralll e ML,
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Corollary 2.5. Suppose given a sequence of measured laminations p, on the once
junctired torus S such that iy, -+ g in ML, und suppose that 6, € F is a sequence of
metrics such that b, (6,) — 0. Then 6, — [u] € PML.

I"oof. 1If 6, converged to a point G, in ¥ then [,(C.) = lim, J,,(0,) =0 which is
impossible. Thus G, converges to some point [§] ¢ PML. Substituting in the funda-
mental inequality we obtain &, — & in ML and d, » oo such that:

Ani(Gns Hn) <y (On) < dni(&nsa) +Cly, (G0)-

Since i(En,un) — i(E, 1), we see that 1, (6,)/d, — i(E,). We conclude that
1&.1) = 0, and hence, since S is a punctured torus, that [§] = [y]. O

1.4. Bending measures

Iet ¢ € QF and let G = G(q) be a group representing g. The convex core € of H>/G
i~ the smallest closed set containing all closed geodesics; it is the projection to the
uotient of the convex hull of the limit set and has non-zero volume if and only if
(; ¢ QF — . In this case its boundary has two connected components dC* each of
which is homeomorphic to S. The metric induced on 3C* from H*/G makes each
A pleated surface. The bending laminations of these surfaces carry natural transverse
measures, the bending measures B*, see [EM87, KS95]. The underlying geodesic
laminations || are called the pleating loci of G. Since the same geodesic lamination
cannot be the pleating locus on both sides, we have i(f+,B~) > 0, see [KS04, BO].
I B* is rational with support y € .S, then B+ = 6,8, where 6y is thc bending angle
along 7. In this case we have the obvious constraint 8y < 7. If G is Fuchsian we define
}$* = 0. One of the main results of [KS95] is that B~ are continuous functions on Q¥ .

The following central existence result is a special case of Bonahon and Otal’s
“l .emme de fermeture”:

‘Theorem 2.6. (/BO] Proposition 8) Suppose u,V € ML with i(u,v) > 0. If u=cdyis
rational assume also that ¢ < &, and similarly for v. Then there exists a quasifuchsian
group G € QF such that B~ =pand B~ =v. If u,v are rational, then G is unique.

The object of this paper is to prove the uniqueness part of this statement for arbi-
trary p and v.
3. Pleating varieties

In this section we review the results we shall need from [KS04].
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Fix y,v € ML. The (u,v)-pleating variety is the set P(u,V) C QF such that B+ &
(4] and B~ € [v] with B* # 0. (The last condition is equivalent to P(u,v)N F = 0.)
Notice that P(u,v) actually only depends on the projective classes [u] and [v]. By
Theorem 2.6 or alternatively [KS04] Theorem 2, P(u,V) is non-empty if and only if
i(p,v) > 0. By [KS04] Proposition 22, the complex length A, is real valued whenever
the projective class of B+ (or $7) is [u]. In this case, [, = R\, is both the lamination|
length in M /G and the length of 4 in the hyperbolic structure on dC™ (or dC™). '

Let (u,v) be measured laminations on § with i(u,v) > 0. Then by [Ker92], the:
function I, + Iy has a unique minimum on #. Moreover as ¢ varies in (0,00), the;
minima of I, + [y form a line £(u,V); it is easy to see that this line only depends on!
the projective classes [u] and [v]. The lines L£(u,V) vary continuously with x4 and v,f
see [Ker92]. (In [KS04] we gave a slightly different description of £(y,V) in terms of ;
the minimum of /, on an earthquake path along v, namely, L(u,V) is the locus wherei
gf—’; vanishes, where #, denotes the earthquake along v. This definition only works%
for the once punctured torus; for the equivalence of the two definitions, see [KS04]}
Lemma 6.) We proved in [Ser05] Theorem 1.7 (in the context of arbitrary hyperbolis- §
able surfaces S) that the closure of P(u,v) meets F exactly in L(u,Vv).

For each ¢ > 0, the line L(u,V) meets the horocycle /, == ¢ in F in exactly one ‘3
point. Let f,,v : RT — R* be the function f, v(c) = Iy(d) where d = L(u,v) N1, (c). 1
We showed ([KS04] Lemma 6) that f,y is surjective and strictly monotone decreas-
ing. We denote by K (u,Vv) the open region in R* x R* bounded between the two
coordinate axes and the graph of f,,v. The following description of P(u,V) is one of
the main results of [KS04): ]

Theorem 3.1. ([KS04] Theorem 2) Let u,v € ML be measured laminations with
i(u,v) > 0. Then the function A, X Ay is locally injective in a neighbourhood of
P(u,Vv), moreover its restriction to P(u,V) is a diffeomorphism to R (u,v).

This means that P(u, V) is totally real, in other words, there are local holomor-
phic coordinates such that a neighbourhood of x € P(u,v) — QF is identified with
a neighbourhood of 0 € R? < C2, Morcover P(u,V) is a connected real 2-manifold, °
on which we can take (,,ly) as global real analytic coordinates, where as above we
define I, = RA,, Iy = RAy.

Corollary 3.2. The set L. =1, (c) C P(u,V) is connected and hence can be regarded |
as a line in R (u,v) parameterised by l,,. '

Proof. This is immediate from the fact that f, v is strictly monotonic. [}

A crucial ingredient of Theorem 3.1 was the following, which we call the limit i
pleating theorem:
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Theorem 3.3, (KS04[ Theorem 5.1) Suppose g, € P(u,V) is a sequence such that
the lengths L,(qn).v(gn) are uniformly bounded above. Then there is a subsequence
of 4, such that the corresponding groups G(qy,) converge algebraically to a group Ge..
I hoth limy, 1,(q,) and lim,, ky(q,) are strictly positive, then G € F U P(u,V) and the
vnvergence is strong.

It is convenient to have a somewhat stronger version of this theorem, in which we
allow the bending loci to vary also:

‘Theorem 3.4. Suppose that u,v ¢ MLg and that p, — y and v, — V. Suppose g, €
"'(1,,Vn) and that l,,, Ly, are uniformly bounded above. Then there is a subsequence
of oy such that G(gn) converges algebraically to a group Gw. If both lim, 1, (q») and
iy Iy, (qn) are strictly positive, then Geo € F U P (u,V) and the convergence is strong.

‘The proof is almost identical to that in [KS04]. We make the assumption that
n.v ¢y MLg since we need that the convergence of y, to u be Hausdorff; this follows
tiom Lemma 2.1.

Very briefly, the proof of Theorem 3.3 goes as follows. The bounds on [, and Iy
allow one to use Thurston [Thu87] Theorem 3.3 (as in the proof of the double limit
iheorem) to conclude the existence of an algebraic limit G.. The main part of the work
i~ to show that G, is quasifuchsian. One uses continuity of the lamination length to
show that the laminations g and v are realised in the limit 3-manifold H*/G.. By
vinefully using the full force of the algebraic convergence, one can then show that, in
the universal cover H, the lifts of the geodesic laminations |u| and |v| from H3/G(g,)
approach the lifts of the realisations of |u| and |v| from H? /G- in the Hausdorff topol-
upy. From this it is not hard to deduce that the laminations |u| and |v| lie in boundary
of the convex core of H3/Ge. One deduces that this boundary has two components
{or one two-sided component if G.. is Fuchsian) from which it follows that G.. € QF .
Inspection shows that exactly the same proof gives the more general version Theo-
iem 3.4, provided we have Hausdorff convergence of [u,| to |u| and |v,| to |v|.

Alternatively, one can modify the proof of the Lemme de fermeture [BO] Proposi-
tion 8. They make an assumption on the limit bending laminations (which in particular
riles out that the limit group is Fuchsian) but since the main use of this assumption is
(v get a bound on the lengths [g+, their proof can be adapted relatively easily to our

Case.
3.1. Scaling functions

L'or fixed y,v € ML we define the scaling functions £,,&y by pt =&, and p~=&v.

Proposition 3.5. The scaling function &, is real analytic on P (i, V).
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Proof. Suppose first that y € MLg and let ¥ = |u|. Let Ay, Ty be complex Fenchel
Nielsen coordinates for QF with respect to . Here Ay is the complex length of y and
Ty is the complex twist along v, see for example [KS04] or [KS97]. The quasifuchsia.n;
group G can be described up to conjugation by these parameters, which are holomot-f
phic functions on Q¥ . As explained in detail in [KS04], if B* € [y] then f+ = 9-,6;
and 6y = 31y. This easily gives the result.

L A

For general u, we can obtain any group for which B* ¢ [u] by a complex earth-:
quake along u. The scale factor &, is easily seen to be 31,. This function is aganﬁ
holomorphic, see Section 7.3 of [KS04]. One can also obtain this result by using the
shear-bend coordinates developed by Bonahon in [Bon96], see also [Bon02]. Ij%

In the special case under discussion the bending measure conjecture can thus b
viewed as the assertion that the map P(u,v) — R* x R*, (,,&y) — (§,,&v) is injec
tive.

4. Global geometry

We shall need various results which control the behaviour of bending angles versusl
bending lengths. The following basic inequality is due to Bridgeman:

Proposition 4.1. (/Bri98] Proposition 2) There exists a universal constant K > 0 such;
that if Bt € [y] € PML, then 1., < K. '

Say G € QF. If y € =1 (S) we let Y* be the geodesic representative of v in 3 /G
and we write y* for the geodesic representative in the hyperbolic structure of 3C*, §
Denote the respective lengths by - and Lx. We recall that L = Ry where Ay is
the complex length defined in Section 3. The following result, a simplified version of 3
Lemma A.1 of [l.ec02}, see also Proposition 5.1 in [Ser05], gives a good comparison i
between the lengths of y* and y* when the intersection of 'y with the bending measure 3
is reasonably small. i

Proposition 4.2. Let B+ be the bending measure of the component C* /G of the
convex hull boundary of the manifold H* /G. Let y be a simple closed curve with §
geodesic representatives Y* in HC /G and ¥* in 9C™*. Then there exist A,B > 0 such §
that if i(y,p*) < /12, then L+ < Aly +B.

Now we can prove a result which will give the global control we need.

Proposition 4.3. Fixa > 0. Then for any K > 0, there exists € > 0 such that whenever
g € P(u,Vv) and 1,(q) < € with&,(q) = a, then I,(q) > K. '
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ool 1 the resultis false, then there is a sequence ¢,y € P(p, V) for which E,(g,) =a
wnel Lo (qg) < K but £,(g,,) > 0. By Theorem 3.3, under these conditions the groups
t+(¢f,,) have an algebraic limit so that in particular, the hyperbolic lengths Ly (gn) =
KAy () are uniformly bounded above for any simple closed curve Y C 1 (S).

Suppose first that u € ML, p — ¢8y for n € S. Then the bending angle 8y, is ¢,
wlhiere necessarily 8y < 7. Since S is a punctured torus, we can choose a simple closed
vive ysuch that i(y,m) — 1. As on p.195 in |[PS95], for any G € Q¥ , we have the
vopntion

cosht,/2 - coshAy /2 tanh Ay /2

where Ty is the complex Fenchel Nielsen twist along 1. Since 1 is assumed to be
the bending locus of dCT, we have Ty = Iy - 10y (sce [KSO4] or [KS97] for detailed
diwcussion). Noting that Ay- = Iy« € R and taking real parts we see that if 8, =ac <=
i+ fned, then Ly- — O implies that - = RAy- — oo. This contradicts the uniform upper
hound to the lengths [y (g, ) from the first paragraph.

Now suppose that y ¢ MLg and that E, = a is fixed. By following a leaf of
|1l which returns sufficiently close to itself along some transversal, we can choose a
wnnple closed curve ¥ such that i(y,B') = ai(y,u) < /12, Since ayu is the bending
measure of dC* (g, ), the lengths £, and [, of the lamination y in H3 /G(gm) and on
the pleated surface dC' (g ) coincide. Since 1+ (gm) — 0, by Coroltary 2.5 the hyper-
bolic structures of the pleated surfaces dC™ (g tend to [} ¢ PML. Since i(y,u) > 0,
i lollows that [y (¢,,) — 0. By Proposition 4.2, we have p (¢n) -~ oo, and the same
contradiction as before completes the proof. C

5. Monotonicity of angle for fixed length

Suppose that the bending laminations g, v are rational, supported by simple closed
curves 7,8 € S, Theorem 3.1 asserts that the pleating variety P(u,v) = P(7,9) is an
open real 2-manifold parameterised by the lengths /4y, ls. Theorem 2.6 shows on the
other hand that the bending angles 8y, 85 are global coordinates for P(y, ).

In [CS] we studied the relationship between bending angle and length for general
lvperbolic 3-manifolds with boundary, where the bending laminations were rational.
In particular, we showed in Proposition 7.1, that if we regard the lengths /; of the bend-
g lines as functions of the bending angles 8;, then the Jacobian matrix (a%) eval-
nated at any point in the relevant pleating varicty is negative definite and symmetric.
'The main point of {CS] is to cstablish that in general lengths are parameters. Given
that both lengths and angles are parameters. so that the Jacobian is non-singular, the
lact that it is symmetric and negative definite follows easily from the Schlifli formula
for variation of volume of the convex core and the symmetry of sccond derivatives;

e |CS])
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Since the inverse of a negative definite symmetric matrix is also negative definitg
and symmetric, and since the diagonal entrics of a negative definite matrix cannnot‘
vanish, we deduce in our special case that %% (g) <0 for g € P(v,8) (where the partlai
derivative is taken keeping l5 fixed). Recall from Corollary 3.2 that L. = [;(c) G
P (u, V) can be regarded as a line parameterised by /,. Our discussion proves: X

Proposition 5.1. Let u,v € MLg. Fix ¢ > 0. Then the scaled bending angle &, is @
¥
strictly monotone function of |, on the line L.

LR SR

We want to take limits to prove the same result for general u,v. We use the follow':,
ing simple fact about analytic functions: :

strictly monotonic or constant.

Notice that a real analytic function f may be strictly monotonic even though its¥
derivative vanishes at some points. (The sequence f,(x) = x> + x/n is an instructives

example.) Thus in the following result we only claim monotonicity and not necessarily3
that 32 <0,

Proposition 5.3. Let u,v € ML. Fixc > 0. Let L, = I;'(c) C P(u,v). Then the$
function &, is a strictly monotone function of I, on the line L. '

Proof. Choose pip,V, € MLy with yu, —» pand v, — vin ML. If either yor v is in'
M Lg then choose the corresponding sequence to be constant. By Lemma 2.1, both."'
sequences of laminations also converge in the Hausdorff topology. '

Fix b,c > 0 such that (b,c) € R (u,v). By Theorem 3.1, there is a unique point §
w(b,c) with [, = b and Iy = c in P(u,v). Since the lines of minima vary continu-
ously with the laminations, for sufficently large n, R (s, V) is close to & (¢, v) and §
hence there is a unique point w,(b,¢) in P(u,,v,) for which [, = b and I, = c. By
the strengthencd version of the limit pleating theorem 3.4, up to extracting a subse- §
quence these points converge to a point in P(u,v). At this point [, = b and ly = ¢, §
hence by Theorem 3.1 the limit point is unique and must equal w(b,c). Now keep c §
fixed and vary b. For cach n, we know from Proposition 5.1 that ,, (w,(b,c)) is a '_
strictly monotone decreasing function of b. By continuity we have &, (w,(b,c)) — }
E.(w(b,c)). Hence for c fixed, §,(w(b,c)) is monotone decreasing. Moreover for |
fixed Iy = ¢, the function &, is real analytic in l,. Hence it is either strictly decreas-
ing or constant. However &, is certainly not constant since &, — 0 as we approach "
Fuchsian space along L. The result follows. a
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We remark that a somewhat simpler version of the above proof would show monotonic-
ity of angle in the Riley slice of Schottky space, proving the bending measure conjec-
e for a genus two handlebody with both handles pinched (so that the boundary is a
aphere with four punctures).

6. The constant angle variety

f1va > 0andlet V, = {g ¢ P(u,v)|§, = a}. Notice that V, # 0 by Theorem 2.6.

L.emma 6.1, V, contains no isolated points.

I"oof. Suppose the contrary, and let g € P(u, V) be an isolated point of V,,. Then there
vwists an open disk D containing g with V,ND = {g}. The image of D—{q} under &,
i» connected, and it follows that g is a local maximum or minimum for the function &,,
testricted to the line L, = I, !(¢), ¢ = ,(g). This contradicts the strict monotonicity of
!, on L, from Proposition 5.3. (]
l.emma 6.2, V, is a real analytic variety of dimension 1.

'"oof. By definition, V, has dimension 2 — r where r is the maximum rank of (%3—:, %%’i)
on 'V, Clearly r < 1. If r = 0 then the Jacobian vanishes identically on V,, from which
we deduce that all partial derivatives of &, vanish identically. This would mean the real
analytic function &, was constant in a neighbourhood of V in P(u,V), contradicting
I'roposition 5.3, O

We can now use the classical local description of real analytic varieties, see for ex-
ample [Loj91] p.173 (or [Mil68] Lemma 3.3 for the analogous real algebraic version):

‘Theorem 6.3. Let P = (xp,y0) be a non-isolated point in a real one dimensional al-
webraic variety V C R2, Then there is a neighbourhood of P in which V consists of a
[niite number of branches, each of which is homeomorphic to an open interval on R,
Afier interchanging the rwo coordinates if necessary, we may assume this homeomor-
phism has the form t — (xo+1t%,y0 + Yo byt") where the highest common factor of k
and the indices of the non-vanishing coefficients b, is 1.

PProposition 6.4. V, consists of a unique connected component with no branch points
which intersects each line L, in a unique point.

I'roof. We already know by Proposition 5.3 that V,; N L, consists of at most one point.
In other words, the restriction of I, to V, is injective, hence in particular, has no local
maxima or minima. Denote this restriction by f. It is easy to see that injectivity of f
implies that V,; has no branch points.



(347 ICHICS

Let W be a connected component of V,,. We claim that the image f(W) is (0,00). Rt
follows from Theorem 6.3 and the above observation about local maxima and mmlmq
that f(W) is open. Now we show that f is proper. Choose w, € W with f(w,) —»l
where 0 < b < oo, s0 that by definition the lengths Iy (w,) are bounded above. Sincg
€y = a on V,, it follows from Bridgeman’s inequality that the lengths I,(w,) are als¢
uniformly bounded above. By Theorem 3.3, the corresponding sequence of groupk

G(wy) converge algebraically to a group G and since G is clearly not Fuchsian, e1thei'“
G € P(u,V), or f(w,) = ly(wn) — 0 or [,(w,) — 0. By Proposition 4.3, if [, (w,) —-»g
then ly(w,) — oo, ruling out the last possibility. If G € P(u,Vv) then by continuity q
corresponds to a point w € W with f(w) = b. This shows that f is proper and henc#i
that f(W) = (0,0) as claimed. %

Thus W N L, is non-empty for each ¢ € (0,0). If V, had any other connect :
component, then for some c¢ the intersection V, N L. would contain more than ond
point, which is impossible. The result follows. L3

7. Proof of the bending measure conjecture

Suppose a,b > 0. Any quasifuchsian group with B* = au,p~ = bv necessarily liesf-
in the variety V,. The following result therefore concludes the proof of the bendingg
measure conjecture:

Proposition 7.1. Fixa > 0. The angle &, is strictly monotonic on V,,.

Proof. Let g(c) denote the point V, N L,. Choosc sequences v, — V,u, — u, where §
as usual if y € MLg we assume that the sequence y, is constant. Let g, = g,(c) €
P(u,,Vn) be the unique point for which Iy, = ¢ and &, = a; this exists for large n g
since R (i, V) is close to R (i, V). By Bridgeman’s inquality the lengths Iy, (g,) are §
uniformly bounded above. Hence by the limit pleating theorem, we can extract a
subsequence for which G(g,) converges algebraically to a group G. '

We claim that /,,, (g,) does not tend to zero. If 1 € M Lg we can follow exactly the §
argument in the second paragraph of the proof of Proposition 4.3. If uy ¢ MLg, we §
proceed as in the third paragraph of that proof. Now ju,] is the projective class of the §
bending measure of dC" (gy,) so that 1,+(qn) and L (gn) coincide. By Corollary 2.5, §
if 1,,,(g») — O then the hyperbolic structures dC*(g,) converge to [u]. This leads to a §
contradiction to the existence of the algebraic limit of the groups G(g,,) exactly as in §
Proposition 4.3.

We conclude from Theorem 3.3 that G is represented by a point ¢’ € P(u, V). |
Moreover since &, (¢.) — &v(¢’) and Iy, (gn) —» Iv(¢), we deduce that ¢’ = g(c), so }
that the limit is independent of the subscquence.
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By definition g,(c) is the point V) L. We already know that the angle func-
thn &y {gu(c)) is monotonic in ¢. We have just shown that g,(c) — ¢g(c) and so
f, Ln () — Ev(g(c)). We deduce that Ey(g(c)) is monotonic in c.

It remains to show that &,(g{c)) is strictly monotonic. Now &y (g(c)) is a real
slytic function of the parameters 1,,ly for P(u,v). By Theorem 6.3, on the real
simlytic variety V,, each length function is a real analytic function of some ¢ € R. Thus
wr s &y (g(c)). We deduce that Ey(g(c)) is either strictly monotonic or constant on V.
Tu rule out the second possibility, notice that if €y is constant on V,, then Bridgeman’s
Ineequatlity gives a uniform upper bound to /y on V,, contradicting Proposition 6.4. O
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Complexity of 3-manifolds

Bruno Martelli!

Abstract

We give a summary of known results on Matveev’s complexity of compact
3-manifolds. The only relevant new result is the classification of all closed ori-
entable irreducible 3-manifolds of complexity 10.

1. Introduction

In 3-dimensional topology, various quantities are defined, that measure how compli-
viled a compact 3-manifold M is. Among them, we find the Heegaard genus, the
mintmum number of tetrahedra in a triangulation, and Gromov's norm (which equals
the volume when M is hyperbolic). Both Heegaard genus and Gromov norm are addi-
tive on connected sums, and behave well with respect to other common cut-and-paste
uperations, but it is hard to classify all manifolds with a given genus or norm. On
(he other hand, triangulations with » tetrahedra are more suitable for computational
purposes, since they are finite in number and can be easily listed using a computer, but
the minimum number of tetrahedra is a quantity which does not behave well with any
cut-and-paste operation on 3-manifolds. (Moreover, it is not clear what is meant by
“(riangulation”: do the tetrahedra need to be embedded? Are ideal vertices admitted
when M has boundary?)

In 1988, Matveev introduced [Mat88] for any compact 3-manifold M a non-negative
integer ¢(M), which he called the complexity of M, defined as the minimum number of
vertices of a simple spine of M. The function c is finite-to-one on the most interesting
sets of compact 3-manifolds, and it behaves well with respect to the most important
cut-and-paste operations. Its main properties are listed below.

additivity c(M#M') = c(M) +c(M');

finiteness for any n there is a finitc number of closed P?-irreducible M’s with ¢(M) =
n, and a finite number of hyperbolic N’s with ¢(N) = n;

monotonicity ¢(Mr) < ¢(M) for any incompressible F C M cutting M into M.

'Supported by the INTAS project “CalcoMet-GT” 03-51-3663.



We recall some definitions used throughout the paper. Let M be a compact 3
manifold, possibly with boundary. We say that M is hyperbolic if it admits (afteg
removing all tori and Klein bottles from the boundary) a complete hyperbolic metrig
of finite volume (possibly with cusps and geodesic boundary). Such a metric is uniqui
by Mostow’s theorem (see [McM90] for a proof). A surface in M is essential if it if}]
incompressible, d-incompressible, and not d-parallel. Thurston’s Hyperbolicity Theo;':
rem for Haken manifolds ensures that a compact M with boundary is hyperbolic if andﬁ
only if every component of dM has X < 0, and M does not contain essential surfaces;
with % > 0. The complexity satisfies also the following strict inequalities.

filling every closed hyperbolic M is a Dehn filling of some hyperbolic N with ¢(N) <3
c(M); ;

strict monotonicity ¢(Mr) < ¢(M) if F is essential and M is closed P2-irreducible
or hyperbolic;

Some results in complexity zero already show that the finiteness property does not 4
hold for all compact 3-manifolds. ;

complexity zero the closed P2-irreducible manifolds with ¢ = 0 are $3,RP?, and }

L(3,1). We also have c(5? x §!) = ¢(§2 X §') = 0. Interval bundles over sur- §
faces and handlebodies also have ¢ = 0. ;

The ball and the solid torus have therefore complexity zero. Moreover, the additiv- 1

ity property actually also holds for d-connected sums. These two facts together imply §
the following.

stability The complexity of M does not change when adding 1-handles to M or re- |
moving interior balls from it. “

Note that both such operations that not affect c are “invertible” and hence topolog-
ically inessential. In what follows, a simplicial face-pairing T of some tetrahedra is a §
triangulation of a closed 3-manifold M when M = |T|. Tetrahedra are therefore not f
necessarily embedded in M. A simplicial pairing T is an ideal triangulation of a com- |
pact M with boundary if M is |T| minus open stars of all the vertices. The finitencss
property above follows easily from the following.

naturality if M is closed P2-irreducible and not §3, RP?, or L(3, 1), then c(M) is the !
minimum number of tetrahedra in a triangulation of M. If N is hyperbolic with

boundary, then c(N) is the minimum number of tetrahedra in an ideal triangula-
tion of N.
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‘The heauty of Matveev's complexity theory relies on the fact that simple spines
s more flexible than triangulations: for instance spines can often be simplified by
jmncturing faces, and can always be cut along normal surfaces. In particular, we have
e lollowing result. An (ideal) triangulation T of M is minimal when M cannot be
tileally) triangulated with fewer tetrahedra. A normal surface in T is one intersecting
the 1etrabhedra in normal triangles and squares, see | Hem76].

normal surfaces let 7' be a minimal (ideal) triangulation of a closed P2-irreducible
(hyperbolic with boundary) manifold M diffcrent from $3, RIP?, and L(3,1). If
F is a normal surface in T containing some squares, then c(My) < ¢(M).

As an application of the previous properties, the following result was implicit in
Matveev’s paper [Mat90].

Corollary 1.1. Let T be a minimal triangulation of a closed P2-irreducible 3-manifold
M different from S, RP?,L(3,1). Then T has one vertex only, and it contains no
normal spheres, except the vertex-linking one.

Computers can easily handle spines and triangulations, and manifolds of low com-
plexity have been classified by various authors. Closed orientable irreducible mani-
lolds with ¢ < 6 were classified by Matveev [Mat88] in 1988. Those with ¢ = 7 were
then classified in 1997 by Ovchinnikov [Ovc97, Mat03a], and those with ¢ = 8,9 in
2001 by Martelli and Petronio [MPOla]. We present here the results we recently found
lor ¢ = 10. The list of all manifolds with ¢ = 10 has also been computed independently
hy Matveev [Mat0O3b], and the two tables (each consisting of 3078 manifolds) coin-
vide. The closed P2-irreducible non-orientable manifolds with ¢ < 7 have been listed
independently by Amendola and Martelli [AMOS], and Burton [Bur03].

Hyperbolic manifolds with cusps and without geodesic boundary were listed for
all ¢ € 3 in the orientable case by Matveev and Fomenko [MF88] in 1988, and for all
¢ £ 7 by Callahan, Hildebrand, and Weeks [CHW99] in 1999. Orientable hyperbolic
manifolds with geodesic boundary (and possibly some cusps) were listed for ¢ < 2 by
tyjii [Fuj90] in 1990, and for ¢ < 4 by Frigerio, Martelli, and Petronio [FMP04] in
2002.

All properties listed above were proved by Matveev in [Mat90], and extended
when necessary to the non-orientable case by Martelli and Petronio in [MP02b], ex-
cept the filling property, which is a new result proved below in Subsection 2.3. The
only other new results contained in this paper are the complexity-10 closed census
(also constructed independently by Matveev [Mat03b]), and the following counterex-
ample (derived from that census) of a conjecture of Matveev and Fomenko [MF88]
stated in Subsection 5.3.



Proposition 1.2. There are two closed hyperbolic fillings M and M’ of the same
cusped hyperbolic N with (M) < ¢(M') and Vol(M) > Vol(M').

We mention the most important discovery of our census.

Proposition 1.3. There are 25 closed hyperbolic manifolds with ¢ = 10 (while nonq
with ¢ < 8 and four with c = 9).

This paper is structured as follows: the complexity of a 3-manifold is defined 1n1
Section 2. We then collect in Section 3 and 4 the censuses of closed and hyperbolic 3-;
manifolds described above, together with the new results in complexity 10. Relationsi
between complexity and volume of hyperbolic manifolds are studied in Section 5
Lower bounds for the complexity, together with some infinite families of hyperbolici
manifolds with boundary for which the complexity is known, are described in Sec--ﬁ
tion 6. The algorithm and tools usually employed to produce a census are descrlbedh
in Section 7. Finally, we describe the decomposition of a manifold into bricks intro-
duced by Martelli and Petronio in [MPO1a, MPO2b], necessary for our closed census 4
with ¢ = 10, in Section 8. All sections may be read independently, except that Sec-:-
tions 7 and 8 need the definitions contained in Section 2. '
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2. The complexity of a 3-manifold

We define here simple and special spines, and the complexity of a 3-manifold. We
then show a nice relation between spines without vertices and Riemannian geometry, |
found by Alexander and Bishop [ABOO]. Finally, we prove the filling property stated |
in the Introduction.

2.1. Definitions

We start with the following definition. A compact 2-dimensional polyhedron P is
simple if the link of every point in P is contained in the graph &. Alternatively, P
is simple if it is locally contained in the polyhedron shown in Fig. 1-(3). A point, a
compact graph, a compact surface are therefore simple. The polyhedron given by two
orthogonal discs intersecting in their diameter is not simple. Three important possible
kinds of neighborhoods of points are shown in Fig. 1. A point having the whole of ©
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Figure 1: Neighborhoods of points in a special polyhedron.

iyt

Figure 2: A special spine of M is dual to a triangulation, which is ideal or 1-vertex, depending
on whether M has boundary or not.

as a link is called a vertex, and its regular neighborhood is shown in Fig. 1-(3). The
set V(P) of the vertices of P consists of isolated points, so it is finite. Note that points,
praphs, and surfaces do not contain vertices.

A compact polyhedron P C M is a spine of a compact manifold M with boundary
if M collapses onto P. When M is closed, we say that P C M is a spine if M\ P is an
open ball. The complexity ¢(M) of a compact 3-manifold M is the minimal number of
vertices of a simple spine of M. As an example, a point is a spinc of 3, and therefore
¢(83) = 0. A simple polyhedron is special when every point has a neighborhood of one
of the types (1)-(3) shown in Fig. 1, and the sets of such points induce a cellularization
of P. That is, defining S(P) as the set of points of type (2) or (3), the components of
P\ S(P) should be open discs — the faces — and the components of S(P) \ V (P) should
be open segments — the edges.

Remark 2.1. A special spine of a compact M with boundary is dual to an ideal trian-
gulation of M, and a special spine of a closed M is dual to a 1-vertex triangulation of
M, as suggested by Fig. 2. In particular, a special spine is a spine of a unique manifold.
Therefore the naturality property of ¢ may be read as follows: every closed irreducible
or hyperbolic manifold distinct from $3, RP3, and L(3,1) has a special spine with
¢(M) vertices. Such a special spine is then called minimal.
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2.2. Complexity zero

A handlebody M collapses onto a graph, which has no vertices, hence ¢(M) = 0. An
interval bundle M over a surface has that surface as a spine, and hence c¢(M) = 0
again. Note that, by shrinking the fibers of the bundle, the manifold M admits prod-
uct metrics with arbitrarily small injectivity radius and uniformly bounded curva=
ture. This is a particular case of a relation between spines and Riemannian geom-
etry found by Alexander and Bishop [ABOO]. A Riemannian 3-manifold M is thin
when its curvature-normalized injectivity radius is less than some constant a; = 0. 075,e
see [ABOO] for details. We have the following. :

Proposition 2.2 (Alexander-Bishop [ABOO}). A thin Riemannian 3-manifold has com-‘

plexity zero. M

:
2.3. The filling property "
We prove here the filling property, stated in the Introduction. Recall from [Mat90,,
Mat(3a] that by thickening a special spine P of M we get a handle decomposition Ep ;
of the same M. Normal surfaces in £p correspond to normal surfaces in the (possibly ;
ideal) triangulation dual to P.

Theorem 2.3. Every closed hyperbolic manifold M is a Dehn filling of some hyper-'
bolic N with ¢(N) < c¢(M).

E
Proof. Let P be a minimal special spine of M, which exists by Remark 2.1. Take a

face f of P. By puncturing f and collapsing the resulting polyhedron as much as pos-
sible, we get a simple spine Q of some N obtained by drilling M along a curve. Since P
is special, f is incident to at least one vertex. During the collapse, all vertices adjacent

to f have disappeared, hence Q has less vertices than P, This gives ¢(N) < c(M). '

If N is hyperbolic we are done. Suppose it is not. Then it is reducible, Seifert, or -
toroidal. If N is reducible, the drilled solid torus is contained in a ball of M and we get -
N = M#M' for some M', hence c(M) < ¢(N) < ¢(M) by the additivity property. Then |
N is irreducible. Moreover oN is incompressible in N (because M is not a lens space).
Then the 1-dimensional portion of Q can be removed, and we can suppose @ C Pis a '
spine of N having only points of the type of Fig. 1.

Our N cannot be Seifert (because M is hyperbolic), hence its JSJ decompostion '
consists of some tori T3, ..., T;. Each 7; is essential in N and compressible in M. Each
T; can be isotoped in normal position with respect to y. Since Q C P, every nor-
mal surface in §¢ is normal also in &p. The only normal surface in &p not containing
squares is the vertex-linking sphere, therefore we have ¢(Mr,) < c¢(M) for all i by the

normal surfaces property. Each 7; is compressible in M, hence either it bounds a solid
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0O 1 23 4 5 6 7 8 9 10
oricntable
lensspaces 3 2 3 6 10 20 36 72 136 272 528

other elliptic I 1 4 11 25 45 78 142 270
flat . . . . . . 6 . . . .
Nit .. 0. . . 7 10 14 15 15
SL,R . . . .. . . 39 162 513 1416
Sol . . . . . . . 5 9 23 39
HZxR . . . . . . . . 2 . 8
hyperbolic . . . . . . . . . 4 25
not geometric . . . . . 4 35 18 177

totgl orientable 3 2 4 7 14 31 74 175 436 1154 3078
non-orientable

flat . . . . . . 4
H? x R 2
Sol 1 1
total non-orientable . . . . . . 5 3

‘Tuble 1: The number of closed P2-irreducible manifolds of given complexity (up to 10 in the
unentable case, and up to 7 in the non-orientable one) and geometry. Recall that there is no
1" irreducible manifold of type 52 x R, and no non-orientable one of type $3, Nil, and SLyR.

torus or is contained in a ball. The latter case is excluded, otherwise M7, is the union
of M#M' and a solid torus, and ¢(M) < ¢(My,) < c(M).

Therefore each T; bounds a solid torus in M. Each solid torus contains the drilled
vurve, hence they all intersect, and there is a solid torus H bounded by a 7; containing
il the others. Therefore M7, = N’ UH where N’ is a block of the JSJ decomposition,
which cannot be Seifert, hence it is hyperbolic. We have ¢(N') = ¢(Mr,) < ¢(M), and
M is obtained by filling N, as required. O

Remark 2.4. The proof Theorem 2.3 is also valid for M hyperbolike, i.e. irreducible,
atoroidal, and not Seifert.

3. Closed census

We describe here the closed oricntable irreducible manifolds with ¢ < 10, and the
¢losed non-orientable P2-irreducible ones with ¢ < 7. Such manifolds are collected
in terms of their geometry, if any, in Table 1. The complete list of manifolds can be
downloaded from [Pet].
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| xorh >0 xorb 0 xorb <0
Ce=0| xR E}  H?xR
e£0| 8 Nil SL,R

Table 2: The six Seifert geometrics.

3.1. The first 7 geometries

We recall [Sco83] that there are eight important 3-dimensional geometries, six of them
concerning Seifert manifolds. A Seifert fibration is described via its normalized para-.
meters (F,(p1,q1),-.-,(Pk,qk),t), where F is a closed surface, p; > g; > 0 for all i,
and t > —k/2 (obtained by reversing orientation if necessary). The Euler characteristic
x°™ of the base orbifold and the Euler number e of the fibration are given respectively:

by

< 1 L gy i

x""’:x(F)--E(l——) e=t+Y = ,l
i=1 41 ; i

and they determine the geometry of the Seifert manifold (which could have different:

fibrations) according to Table 2. The two non-Seifert geometries are the Sol and thea

hyperbolic ones [Sco83].

The following result shows how to compute the complexity (when ¢ < 10) of most
manifolds belonging to the first 7 geometries. It is proved for ¢ < 9 in [MP04], and
completed for ¢ = 10 here in Subsection 8.7. We define the norm |p, g| of two coprlme ‘
non-negative integers inductively by setting |1,0| = 0,1 =|1,1|=0and [p+¢,¢| = ;
ip,g+p|=|p,gq|+ 1. Anorm ||A|| on matrices A € GLy(Z) is also defined in [MP04]. ;

Theorem 3.1. Let M be a geometric non-hyperbolic manifold with c(M) < 10: i-
(i) ifM is a lens space L(p,q), then c(M) = |p,q| —

(i) if M is a torus bundle with monodromy A then ¢(M) = min{||A|| + 5,6}.

ot e e i bt LBt

(iii) ifM = (82,(2,1),(3,1),(m,1),- 1) withm > 5, we have c(M) = m;

(iv) if M = (5%,(2,1),(n,1),(m, 1),——1) is not of the type above, we have c(M) =
n+m-—2;

™) ifM= (Sz,(2,1),(3,1),(p,q),—1) with p/q > 5 is not of the types above, we .
have c(M) = |p,q| +2;

(vi) ifM = (F,(p1,q1);---,(Px-qr).t) is not of the types above, then

k
c(M) = max {0,t — 1+ %(F)} +6(1 —x(F)) +; (Ipi,gi] +2).
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) The symetries of this link act transitively on the com-
ponents, in such a way that to detine the (p/q,r/s,t /u)-
/_ surgery we do not necd to associate a component to

{ ( Z ~

each parameter.

Figure 3: The chain link with 3 components.

Note from Table I that a Seifert manifold with ¢ < 6 has x°® > 0 and one with
¢ - 0 has x°® > 0, whereas for higher ¢ most Seifert manifolds have x° < 0.

Remark 3.2, Theorem 3.1, together with analogous formulas for some non-geometric
praph manifolds, follows from the decomposition of closed manifolds into bricks,
introduced in Section 8. The lists of all non-hyperbolic manifolds with ¢ < 10 is then
vomputed from such formulas by a computer program, available from [Pet]. A mistake
in that program produced in [MPO1a] for ¢ =9 a list of 1156 manifolds instead of 1154
(two graph manifolds with distinct parameters were counted twice). Using Turaev-
Viro invariants, Matveev has also recently checked that all the listed closed manifolds
wilth ¢ < 10 are distinct [Mat03b].

1.2. Hyperbolic manifolds

‘Tuble 3 shows all closed hyperbolic manifolds with ¢ < 10. Each such manifold is a
Dehn surgery on the chain link with 3 components shown in Fig. 3, with paramcters
shown in the table.

It is proved in [MF88] that every closed 3-manifold with ¢ < 8 is a graph mani-
fold, and that the first closed hyperbolic manifolds arise with ¢ = 9. The hyperbolic
manifolds with ¢ = 9 then turned out [MP014a] to be the 4 smallest ones known. The
most interesting question about those with ¢ = 10 is then whether they are also among
the smallest ones known, for instance comparing them with the closed census [HW94]
also used by SnapPea [Wee]. As explained in [DTO03], the manifolds in that census
have all geodesics bigger than .3, and therefore some manifolds having ¢ = 10 are not
present there (namely, those in Table 3 corresponding to N. 16, 21, 24). We have there-
tore used SnapPea (in the python version) to compute a list of many surgeries on the
¢hain link with 3 components (avoiding the non-hyperbolic ones, listed in [MP02a]),
available from [Pet], which contains many closed manifolds of volume smaller than
2 that are not present in SnapPea’s closed census. The entry “N.” in Table 3 tells the
position of the manifold in our table from [Pect]. The first 10 manifolds of the two
lists neverthcless coincide and are also fully described in [HW94], and they all have
¢ < 10, as Table 3 shows.



surgery parameters  N. volume shortest geod  homology

complexity 9
1,—-4,-3/2 1 0.942707362 0.5846 Zs+Zs
1,--4,2 2 0.981368828 0.5780 Zs
1,--5,—1/2 3 1.014941606 0.8314 Zs+Zs
1,-3/2,-3/2 4  1.263709238 0.5750 Zs +Zs
complexity 10
1,-5,2 5 1.284485300 0.4803 Ze
1,2,1/2 6  1.398508884 0.3661 trivial
1,-5,1/2 7  1.414061044 0.7941 Zg
1,—-4,3 8  1.414061044 0.3648 Z1o
1,—4,-4/3 9  1.423611900 0.3523 Zs3s
1,2,-1/2 10 1.440699006 0.3615 Zs
1,2,-3/2 12 1.529477329 0.3359 Zs
1,-4,-5/2 13 1.543568911 0.3353 Z3s
1,-1/2,-5/2 14 1.543568911 0.5780 Zy,
1,-4,-5/3 16  1.583166660 0.2788 Zso
1,-6,—-1/2 17 1.583166660 0.5577 Zy
1,-1/2,-7/2 18 1.583166660 0.7774 Zy+Zo
2,-3/2,-3/2 19 1.588646639 0.3046 Zszy
1,-5,-3/2 20 1.588646639 0.5345 Z3o
1,-4,3/2 21 1.610469711 0.2499 Zs
1,2,--5/2 24 1.649609715 0.2627 Zq
1,-1/2,-3/2 25  1.649609715 0.5087 Zs
1,1/2,-6 34 1.757126029 0.7053 Zy
1,-1/2,-1/2 49  1.824344322 0.4680 Z3+Zs3
1,-5,—1/3 55 1.831931188 0.5306 Zy+ 22
1,-3/2,-5/3 74  1.885414725 0.3970 Zag
1,-5/2,-5/2 76 1.885414725 0.5846 Zr+Z
-5/2,—-1/2,—-1/2 77 1.885414725 0.5846 Zsy
1,-5,-2/3 91 1.910843793 0.4421 Zsp
1,-4/3,-3/2 139  1.953708315 0.3535 Zss

Table 3: The hyperbolic manifolds of complexity 9 and 10. Each such manifold is described as
the surgery on the chain link with some parameters.
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tw

3 4 5 6 7 8 9 10
geometric
lensspaces 3 2 3 6 10 20 36 72 136 272 528

$23 . . 1 1 4 11 31~ 84 226 586 1477
s24 . . . . . .2 4 14 40 120
s L. ) ) ) 2 5
R??,2 2 4 14 34 9
RP?3 . . . . . . ) ) ) 2 5
Tork . . . . . . 4* 2 2 2 2
T,lork,l . . . . . . . . . 4 10
/' tiberings over 8' . . . . . | . 2 2 6 6
T'-liberingsover! . . . . . . . 3 7 17 33
non-geometric
D2—nD2 . . . . . . . 4 35 168 674
Al . L. . . . . . 8 24
D2-—-Db3 . . . . . . . . . 3 24
s,1-—-D,2 . . . . . . . . . 3 24

D2—A1—D2 . . . . . .. . . 3 31
total 3 2 4 7 14 31 74 175 436 1150 3053

‘Tuble 4: The type of graph manifolds of given complexity, up to 10. Here, /,D,S,A, T, K denote
wspectively the closed interval, the disc, the Mobius strip, the annulus, the torus, and the Klein
hottle. We denote by X, n a block with base space the surface X and n exceptional fibers. We
write X for X,0. We have counted as T-fiberings only the Sol manifolds, not the manifolds also
mimitting a Seifert structure. There is a flat manifold with ¢ = 6 counted twice, since it has two
ditferent fibrations, corresponding to the asterisks.

3.3. Non-geometric manifolds

livery non-hyperbolic orientable manifold with ¢ < 10 is a graph manifold, i.e. its JSJ
decomposition consists of Seifert or Sol blocks. A non-geometric orientable man-
itold whose decomposition contains a hyperbolic block with ¢ < 11 is constructed

in |AMO3], and from our census now it follows that it cannot have ¢ < 10. Therefore
we have proved the following.

‘Theorem 3.3. The first closed orientable irreducible manifold with non-trivial JS]
decomposition containing hyperbolic blocks has ¢ = 11.

All graph manifolds with ¢ < 10 are collected in Table 4 according to their JSJ
decomposition into fibering picces, and to the type of fiberings of each piece.
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3.4. The simpliest manifolds

As the following discussion shows, in most geometries, the manifoids with lowest
complexity are the “simplest” ones.

3.4.1. Elliptic

The elliptic manifolds of smallest complexity are $°, RP®, and L(3, 1), having ¢ = 0.
The first manifold which is not a lens space is ($2,(2,1),(2,1),(2,1), -1) and has:
¢ = 2. Tt is the elliptic manifold with smallest non-cyclic fundamental group, having!
order 8 [Mat03a]. X

i

3.4.2. Flat

[P

[

Every (orientable or not) flat manifold has ¢ = 6. A typical way to obtain some flat 'g
3-manifold M is from a face-pairing of the cube: by taking a triangulation of the cube
with 6 tetrahedra matching along the face-pairing, we get a minimal triangulation of

M.
343 H2xR

The first manifolds of type H? x R are non-orientable and have ¢ = 7, and are also
the manifolds of that geometry with smallest base orbifold [AMO05], having volume
—2mx°™® = /3.

3.4.4. Sol

The first manifold of type Sol is also non-orientable and has ¢ = 6, and it is the unique
filling of the Gieseking manifold, the cusped hyperbolic manifold with smallest vol-
ume 1.0149... [Ada87] and smallest complexity 1 [CHW99]. It is also the unique
torus fibering whose monodromy A = ‘,’}) is hyperbolic with |trA| < 2 [AMOS5].

3.4.5. Hyperbolic

As we said above, the first orientable hyperbolic manifolds are the smallest ones
known. It would be interesting to know the complexity of the first non-orientable
closed hyperbolic manifold, whose volume is probably considerably bigger than in
the orientable case, sec [HW94).

4. Census of hyperbolic manifolds

We describe here the compact hyperbolic manifolds with boundary with ¥ = 0 and
¢ < 7, and the oricntable ones with ¥ < 0 and ¢ < 4.
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topological boundary 0 I 2 3 4 5 6 7
orientable
T . . 2 9 52 223 913 3388
rr . . . . 4 11 48 162
T.T,.T . . . . . . 1 2
total orientable . . 2 9 56 234 962 3552
non-orientable
K . 1 1 5 14 52 171 617
K,k . . 1 2 9 23 68 208
K.X.x . . . . . . 3 6
K.XK,X.XK . . . . . . 1 .
T . . . . 1 1 4 19
.t . . . . . . 1 .
kr . . . . 1 2 8 31
K.x,r . . . . 1 . 3 6
total non-orientable . 1 2 7 26 78 259 887

‘Tuble 5: The number of cusped hyperbolic manifolds of given complexity, up to 7. The “topo-
lagical boundary” indicates the tori T and Klein bottles K present as cusps.

4.1. Manifolds with y =0

Recall that we define a compact M to be hyperbolic when it admits a complete metric
ol linite volume and gcodesic boundary, after removing all boundary components with
X - 0. Therefore, hyperbolic manifolds M with 3 (M) = 0 have some cusps based on
tori or Klein bottles, and those with (M) < 0 have geodesic boundary and possibly
some cusps. To avoid confusion, we define the topological boundary of M to be the
union of the geodesic boundary and the cusps.

Hyperbolic manifolds with % (M) = 0 and ¢ < 7 were listed by Hodgson and Weeks
in [CHW99] and form the cusped census used by SnapPea. They are collected, ac-
cording to their topological boundary, in Table 5. Hyperbolicity of each manifold was
checked by solving Thurston’s equations, and all manifolds were distinguished com-
puting their Epstein-Penner canonical decomposition [EP88]. In practice, volume,
homology, and the length of the shortest geodesic are usually enough to distinguish
two such manifolds.

4.2. Manifolds with y < 0

liquations analogous to Thurston’s were constructed by Frigerio and Petronio in [FP04]
for an ideal triangulation T of a manifold M with (M) < 0. A solution of such equa-
tions gives a realization of the hyperbolic structure of M via partially truncated hyper-
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topological boundary 0 | 2 3 4

2 . . 8 16 628
3. . . 74 2034
4 . . .. 2340
20 . . . 1 18
30 . . . . 12
2,00 . . . . 1
total . . 8 151 5033

Table 6: The number of orientable hyperbolic manifolds with non-empty geodesic boundary
of given complexity, up to 4. The “topological boundary” indicates the genera of the boundary
components, with zeroes correspond to cusps.

bolic tetrahedra. One such tetrahedron is parametrized by its 6 interior dihedral angles

Olf,...,0. The sum of the 3 of them incident to a given vertcx must be less or equali
than 7, and the vertex is truncated if the sum is less than &, or ideal if it is &. The!
compatibility equations ensure that identified edges all have the same length and that':
dihedral angles sum to 27 around each resulting edge. These equations, together with:
others checking the completeness of the cusps, realize the hyperbolic structure for!'if
M. Then Kojima’s canonical decomposition [Koj90], analogous to Epstein-Penner’s, -
is a complete invariant which allows one to distinguish manifolds. In contrast with";
the case § = 0, there are plenty of manifolds having the same complexity that are :
not distinguished by volume, homology, Turaev-Viro invariants, and the canonical
decomposition seems to be the only available tool, see Subsection 6.2. The results
from [FMP04] are summarized in Table 6.

Remark 4.1. The two censuses of hyperbolic manifolds described in this Section
have a slightly more experimental nature than the closed census of Section 3, since
solving hyperbolicity equations and calculating the canonical decomposition involve
numerical calculations with truncated digits.

5. Complexity and volume of hyperbolic manifolds

We describe here some relations between the complexity and the volume of a hyper-
bolic 3-manifold. '

5.1. Ideal tetrahedra and octahedra

As Theorem 5.1 below shows, there is a constant K such that Vol(M) < K - ¢(M) for
any hyperbolic M. Let vr = 1.0149. .. and vo = 3.6638.. . . be the volumes respectively
of the regular ideal hyperbolic tetrahedron and octahedron.
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Theorem 5.1, Let M be hyperbolic, with or without boundary. If ¥ (M) = 0 we have
VoliM ) =5 vr-¢(M). If (M) < O we have Vol(M) < vo - c¢(M).

f1o0f. First, note that by the naturality property of the complexity ¢(M) is the min-
inm number of tetrahedra in an (ideal) triangulation. If M is closed, take a min-
il triangulation T and straighten it. Tetrahedra may overlap or collapse to low-
imensional objects, having volume zero. Since geodesic tetrahedra have volume less
thun v, we get the inequality.

11'M is not closed, let T be an ideal triangulation for M with c(M) tetrahedra. We
van realize topologically M with its boundary tori removed, by partially truncating
vich tetrahedron in T (i.e. removing the vertex only in presence of a cusp, and an
vpen star of it in presence of truc boundary). Then we can straighten every truncated
jvirahedron with respect to the hyperbolic structure in M. As above, tetrahedra may
vverlap or collapse. In any case, the volume of each such will be at most vy if there
i no boundary, and strictly less than v in general, since any ideal tetrahedron has
volume at most equal to vr, and any partially truncated tetrahedron has volume strictly
less than v [Ush03]. [

The constants vr and vg are the best possible ones, see Remark 6.9. A converse
1esult of type c¢(M) < K’ - Vol(M) is impossible, because for big C’s there are a finite
number of hyperbolic manifolds with complexity less than C, and an infinite number
ol such with volume less than C.

5.2. First segments of ¢ and Vol

(‘omplexity and volume give two partial orderings on the set # of all hyperbolic
{-manifolds. By what was just said, they are globally qualitatively very different.
Nevertheless, as noted in [MF88], they might have similar behaviours on some subsets
ol #. We propose the following conjecture.

Conjecture 5.2, Among hyperbolic manifolds with the same topological boundary,
(he ones with smallest complexity have volume smaller than the other ones.

The conjecture is stated more precisely as follows: let My be the set of hyperbolic
manifolds having some fixed topological boundary X. Suppose M € My is so that
(M"Y = c(M) for all M’ € Mz. We conjecture that Vol(M’) > Vol(M) for all M’ € M5
having c(M') > c¢(M). We now discuss our conjecture.

5.2.1. Closed case

The closed hyperbolic manifolds with smallest ¢ = 9 are the four having smallest vol-
ume known, see Table 3. Therefore Conjecturc 5.2 claims that these four are actually
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the ones having smallest volumes among all closed hyperbolic manifolds.
5.2.2. Connected topological boundary

In this case, Conjecture 5.2 is true, as the following shows,

Theorem 5.3. Among hyperbolic manifolds whose topological boundary is a con?-_
nected surface, the ones with smallest volume are the ones with smallest complexity. '
Proof. Among manifolds having one toric cusp, the figure-8 knot complement an&
its sibling are those with minimal volume 2 - vy [CMO1] and minimal complexit)’f
2. Among those with a Klein bottle cusp, the Gieseking manifold is the one w1tﬂ
minimal volume vy [Ada87] and minimal complexity 1. Our assertion restricted td
orientable 3-manifolds bounded by a connected surface of higher genus is proved
in [FMP03a] combining the naturality property of the complexity with Miyamoto’@
description [Miy94] of all such manifolds with minimal volume. The same proof alskg
works in the general case.

5.2.3. Experimental data %

Conjecture 5.2 is true when restricted to the manifolds of Tables 3, 5, and 6, for all th%
boundary types involved (see [CHW99], [Wee], and [FMP04]). One sees from Table 3
that the manifolds of type (K,K), (T,T), (K,T), (K,K,T), (T,T,T), (K,K,K), and:
(K,K,K,K) with smallest complexity have respectively ¢ = 2,4,4,4,6,6, and 6. The
manifolds with ¢ = 2 are constructed with two regular ideal tetrahedra, and hence havef
volume 2 - vy. Those with ¢ = 4 are constructed either with 4 regular ideal tetrahedra,
hence having volume 4 - vt = 4.05976. .., or with one regular ideal octahedron, of:
volume vg = 3.6638... (therefore Conjecture 5.2 claims that every other M with the:
same topological boundary has volume bigger than 4 - vr). Those with ¢ = 6 have}
volume 2 -vp = 5.3334..., where vp = 2.6667... is the volume of the “triangular
ideal drum” used by Thurston [Thu80] to construct the complement of the chain link

A
of Fig. 3, which is the only orientable manifold among them. }

Problem 5.4. Classify the hyperbolic (orientable) manifolds of smallest complexity *
among those having ¥ = 0 and k toric cusps, and compute their volume, for each k.

5.3. Matveev-Fomenko conjecture

As we mentioned above, the orderings given by ¢ and Vol are qualitatively different
on the whole set M of hyperbolic manifolds, but might be similar on some subsets of
M . The following conjecture was proposed by Matveev and Fomenko in [MF88].
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Conjecture 5.5 (Matveev-Fomenko [MEBE]). Let M be a hyperbolic manifold with
nhe cusp. Among Dehn fillings N and N’ ol M, if ¢(N) < ¢(N") then Vol(N) < Vol(N').

‘I'he complexity-10 closed census produces a counterexample to Conjecture 5.5.
Proposition 5.6. Let N(p/q) be the p/q-surgery on the figure-8 knot. We have

Vol(N(5/2)) = 1.5294773... c(N(5/2)) =11
Vol(N(7)) = 1.4637766... e(N(7)) > 11

I"oof. We first note that N(p/q) = N(—p/q) is the (1,2,1 — p/q)-surgery on the
vhain link, The manifold N(7) does not belong to Table 3 (it is the manifold labeled
a~ N.11 in our census of surgeries on the chain link of [Pet]), and hence has ¢ > 11,
whereas N(5/2) is the manifold N.12 and has ¢ = 11. O

6. Lower bounds

I''oviding upper bounds for the complexity of a given manifold M is relatively easy:
Irom any combinatorial description of M one recovers a spine of M with n vertices,
nmk certainly ¢(M) < n. Finding lower bounds is a much more difficult task. The only
« irreducible manifolds whose complexity is known are those listed in the censuses
ul Scctions 3 and 4, and some infinite families of hyperbolic manifolds with bundary
dlescribed below. In particular, for a closed irreducible M, the value ¢(M) is only
hnown when ¢(M) < 10, i.e. for a finite number of manifolds.

0.1. The closed case

‘The only available lower bound for closed irreducible orientable manifolds is the fol-
lowing one, due to Matveev and Pervova. We denote by |Tor(FH;(M))| the order of
the torsion subgroup of Hy (M), while b, is the rank of the free part, i.e. the fist Betti
iimber of M.

Theorem 6.1 (Matveev-Pervova [MPO1b)). Let M be a closed orientable irreducible
manifold different from L(3,1). Then ¢(M) > 2 -logs |Tor(H;(M))|+b; - 1.

Recall that Theorem 3.1 holds only for ¢ < 10. Actually, the same formulas in the
slatement give an upper bound for ¢(M). Some such upper bounds for lens spaces,
torus bundles, and simple Seifert manifolds were previously found by Matveev and
Anisov, who proposed the following conjectures.

C'onjecture 6.2 (Matveev [Mat03a]). We have

c(L(p,q)) = p,gl- 2 and ¢(5%,(2,1),(2,1),(m,1),-1) = m



Conjecture 6.3 (Anisov [AniOl]). The complexity of a torus bundle M over S' W|I§
monodromy A € GLy(Z) is ¢(M) = min{||A|l +5,6}.

6.2. Families of hyperbolic manifolds with boundary of known complexity

The following corollaries of Theorem 5.1 were first noted by Anisov.

2 s S TER e

Corollary 6.4 (Anisov [Ani02]). The complexity of a hyperbolic manifold decompo.h
ing into n ideal regular tetrahedra is n.

m“s AW

Corollary 6.5 (Anisov [Ani02]). The punctured torus bundle with monodromy ( )
is a hyperbolic manifold of complexity 2n.

For each n > 2, Frigerio, Martelli, and Petronio defined [FMPO03a] the family

of all orientable compact manifolds admitting an ideal triangulation with one edge an
n tetrahedra.

Theorem 6.6 (Frigerio-Martelli-Petronio [FMP03al), Let M € M,. Then M is
perbolic with a genus-n surface as geodesic boundary, and without cusps. It hasy

complexity n. Its homology, volume, Heegaard genus, and Turaev-Viro invariants als o
depend only on n.

The manifolds in M, are distinguished by their Kojima’s canonical decompositioti
(see Subsection 4.2), which is precisely the triangulation with one edge defining them.§
Therefore combinatorially different such triangulations give different manifolds. 4

Theorem 6.7 (Frigerio—Martelli-Petronio [FMP03a, FMP03b]). Manifolds in %:

correspond bijectively to triangulations with one edge and n tetrahedra. The car- §
dinality #M, grows as n".

We say that a sequence a, grows as n* when there exist constants 0 < k < K such §
that n¥" < a,, < n¥™ for all n > 0.

Corollary 6.8 (Frigerio-Martelli-Petronio [FMPO3b]). The number of hyperbolic ib
manifolds of complexity n grows as n".

Remark 6.9. From the families introduced here we see that the inequalities of Theo- }
rem 5.1 cannot be strengthened. The torus bundles M above have Vol(M) = vy -c(M), §
and the manifoids in M, have Vol(M) = v, - c(M), with v, equals to the volume of a 1
truncated tetrahedron with all angles 7t/(3n), so that v, -~ vg for n — .

The set M, is also the set mentioned in Theorem 5.3 of all manifolds having |
both minimal complexity and minimal volume among those with a genus-n surface }
as boundary. We therefore get from Table 6 that #M,, is 8,74,2340 forn =2,3,4.
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The class M, is actually contained as ‘M, M, in a bigger family M, 4, defined
in ['MPO3b]. The set M, consists of all orientable hyperbolic manifolds of com-
plexity g +k with connected geodesic boundary of genus g and & cusps. Theorcms 6.6
il 6.7 hold similarly for all such sets. For any fixed g and k, M, is the set of
sl manilolds with minimum complexity among those with that topological boundary.
Fherefore Conjecture 5.2 would imply the following.

(‘onjecture 6.10 (Frigerio-Martelli-Petronio [FMPO3b]). The manifolds of smallest
valume among those with a genus-g geodesic surface as boundary and & cusps are
those in Mg,

7. Minimal spines

We describe here some known results about minimal spines, which are crucial for
computing the censuses of Sections 3 and 4.

7.1. The algorithm

Iie algorithm used to classify all manifolds with increasing complexity n typically
works as follows:

(1) list all special spines with » vertices (or triangulations with n tetrahedra);

(2) remove from the list the many spines that are easily seen to be non-minimal, or
not to thicken to an irreducible (or hyperbolic) manifold;

(3) try to recognize the manifolds obtained from thickening the remaining spines;

(4) eliminate from that list of manifolds the duplicates, and the manifolds that have
already been found previously in some complexity-n’ census for some n’ < n.

‘l'ypically, step (1) produces a huge list of spines, 99.99... % of which are canceled
via some quick criterion of non-minimality during step (2), and one is left with a much
smaller list, so that steps (3) and (4) can be done by hand.

7.2. Cutting dead branches

Step (1) of the algorithm above needs a huge amount of computer time already for
¢ =5, due to the very big number of spines listed. Therefore one actually uses the
non-minimality criteria (step (2)) while listing the special spines with n vertices (step
(1)), to cut many “dead branches”. Step (1) remains the most expensive one in terms
of computer time, so it is worth describing it with some details.



A special spine or its dual (possibly ideal) triangulation 7" (sec Remark 2.1) with‘»;
tetrahedra can be encoded roughly as follows. Take the face-pairing 4-valent graphj‘
of the tetrahedra in T. It has n vertices and 2n edges. After fixing a simplex on eagd|
vertex, a label in S3 on each (oriented) edge of G encodes how the faces are glued
We therefore get 6>" gluings (the same combinatorial T is usually realized by maﬂ

distinct gluings). Point (1) in the algorithm consists of two steps: &
i

(1a) classify all 4-valent graphs G with n vertices; i\

b4

(1b) for each graph G, fix a simplex on each vertex, and try the 62" possible labelmd
on edges.

g fi

Step (1b) is by far the most expensive one, because it contains many “dead branches”§
most of them are cut as follows: a partial labeling of some k of the 2n edges deﬁn‘
a partial gluing of the tetrabedra. If such partial gluing already fulfills some loc
non-minimality criterion, we can forget about every labeling containing this parti"
one.

Remark 7.1. A spine of an orientable manifold can be encoded more efficiently ;,_5
fixing an immersion of the graph G in R?, and assigning a colour in Z; to each
and a colour in Z3 to each edge [BP95].

Local non-minimality criteria used to cut the branches are listed in Subsection 7.3
We discuss in Subsection 7.4 another powerful tool, which works in the closed case]

only: it turns out that most 4-valent graphs G can be quickly checked a priori not
give rise to any minimal spine (of closed manifolds). :

7.3. Local non-minimality criteria

We start with the following results.

Proposition 7.2 (Matveev [Mat90)). Let P be a minimal special spine of a 3-manifold
M. Then P contains no embedded face with at most 3 edges. ¢

Proposition 7.3 (Matveev [Mat90]). Let P be a minimal special spine of a closed
orientable 3-manifold M. Let e be an edge of P. A face f cannot be incident 3 times §
to e, and it cannot run twice on e with opposite directions. '

In the orientable setting, both Propositions 7.2 and 7.3 are special cases of the ., 
following. Recall that S(P) is the subset of a special spine P consisting of all points §
of type (2) and (3) shown in Fig. 1. 1
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Figure 4: Portions of graphs forbidden for minimal triangulations/spines of closed manifolds.

n 3 4 5 6 7 8 9 10 11

use'ful 2 4 12 39 138 638 3366 20751 143829
all 4 10 28 97 359 1635 8296 48432 316520

Table 7: Useful graphs among all 4-valent graphs with n < 11 vertices.

Proposition 7.4 (Martelli-Petronio [MPO1a]). Let P be a minimal spine of a closed
wrientable 3-manifold M. Every simple closed curve Y C P bounding a disc in the ball
M\ P and intersecting S(P) transversely in at most 3 points is contained in a small
neiglborhood of a point of P.

Analogous results in the possibly non-orientable setting are proved by Burton [Bur(4]

7.4. Four-valent graphs

{Quite surprisingly, some 4-valents graphs can be checked a priori not to give any
minimal special spine of closed 3-manifold.

Remark 7.5. The face-pairing graph of a (possibly ideal) triangulation is also the set
N(P) in the dual special spine P.

Propesition 7.6 (Burton [Bur04]). The face-pairing graph G of a minimal triangu-
lution with at least 3 tetrahedra does not contain any portions of the types shown in
lig. 4-(1,2,3), except if G itself is as in Fig. 4-(4).

A portion of G is of type shown in Fig. 4-(2,3,4) when it is as in that picture,
with chains of arbitrary length. In the algorithm of Subsection 7.2, step (1b) can be
therefore restricted to the usefil 4-valent graphs, i.e. the ones that do not contain the
portions forbidden by Proposition 7.6. Table 7, taken from [Bur04], shows that some
10 % of the graphs are useful.

8. Bricks

As shown in Sections 2 and 7, classifying all closed P2-irreducible manifolds with
complexity n reduces to listing all minimal special spines of such manifolds with n



vertices. Non-minimality criteria as those listed in Section 7 are then crucial to elin
inate the many non-minimal spines (by cutting “dead branches”) and gain a lot ¢
computer time. Actually, closed manifolds often have many minimal spines, and it |
not necessary to list them all: a criterion that eliminates some, but not all, minimy
spines of the same manifold is also suitable for us. This is the basic idea which undeg
lies the decomposition of closed P2-irreducible manifolds into bricks, introduced q

Martelli and Petronio in [MP0O1a], and described in the orientable case in this Sectloq
(For the nonorientable one, see [MP02b].)

=.'\

8.1. A quick introduction
The theory is roughly described as follows: every closed irreducible manifold M qu:
composes along tori into pieces on which the complexity is additive. Each torus .
marked with a 0-graph in it, and the complexity of each piece is not the usual on
because it depends on that graphs. A manifold M which does not decompose isf"
brick. Every closed irreducible manifold decomposes into bricks. The decompositid
is not unique, but there can be only a finite number of such. In order to classify alf§
manifolds with ¢ < 10, one classifies all bricks with ¢ < 10, and then assembie the!
in all possible (finite) ways to recover the manifolds.

For ¢ < 10, bricks are atoroidal, hence either Seifert or hyperbolic. And the de'd

composition into bricks is tipically a mixure of the JSJ, the graph-manifolds decom:"
position, and the thick-thin decomposition for hyperbolic manifolds. Very few closed]
manifolds do not decompose, i.e. are themselves bricks.

Proposition 8.1. There are 25 closed bricks with ¢ < 10. They are: 24 Seifert man-‘ ‘,.‘

ifolds of type ($2,(2,1),(m,1),(n,1),—1), and the hyperbolic manifold N.34 of Ta-
ble 3. 4

Among closed bricks, we have Poincaré sphere (2,(2,1),(3,1),(5,1),-1).

Proposition 8.2. There are 25 non-closed bricks with ¢ < 10.

There are 4978 closed irreducible manifolds with ¢ < 10, see Table 1. Therefore .
4953 = 4978 — 25 such manifolds are obtained with the 25 non-closed bricks above.

Before giving precise definitions, we note that the layered triangulations [Bur03, §

JRO3] of the solid torus H are particular decompositions of H into bricks. Our exper- "
imental results show the following,

Proposition 8.3. Every closed irreducible atoroidal manifold with ¢ < 10 has a min- |
imal triangulation containing a (possibly degenerate [Bur03]) layered triangulation,
except for some (S%,(2,1),(m,1),(n,1),—1) and the hyperbolic N.34 of Table 3.
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irigure 5: The Farey tesselation of the Poincaré disc into ideal triangles (left) and a flip (right).

H.2. 6-graphs in the torus

It this paper, a 8-graph 0 in the torus T is a graph with two vertices and three edges
mside T, having an open disc as a complement. That is, it is a trivalent spine of 7.

[ually, this is a one-vertex triangulation of T

‘The set of all 8-graphs in 7" up to isotopy can be described as follows. After
choosing a meridian and a longitude, every slope on T (i.e. isotopy class of simple
vlosed cssential curves) is determined by a number p/q € Q U {eo}. Those numbers
ate the ideal vertices of the Farey tessclation of the Poincaré disc sketched in Fig. 5-
lelt. A ©-graph contains three slopes, which are the vertices of an ideal triangle of the
tessclation. This gives a correspondence between the 8-graphs in 7" and the triangles
of the tesselation. Two 0-graphs correspond to two adjacent triangles when they share
(wo slopes, i.e. when they arc related by a flip, shown in Fig. 5-right.

K.3. Manifolds with marked boundary

I.¢t M be a connected compact 3-manifold with (possibly empty) boundary consisting
ol tori. By associating to each torus component of oM a 6-graph, we gel a manifold
with marked boundary.

Let M and M’ be two marked manifolds, and T € oM, T’ C dM’ be two boundary
tori. A homeomorphism y : T — T’ sending the marking of 7" to thc onc of 77 is
. assembling of M and M'. The result is a new marked manifold N = M Uy M'.
We define analogously a self-assembling of M along two tori T,T' C dM, the only
difference is that for some technical reason we allow thc map to send one 8 C T either
(o @' < T itsclf or to one of the 3 other 8-graphs obtained from 6 via a flip.
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8.4. Spines and complexity for marked manifolds ;
The notion of spine extends from the class of closed manifold to the class of mamfolﬁ
with marked boundary. Recall from Subsection 2.1 that a compact polyhedron is siig
ple when the link of each point is contained in ®. A sub-polyhedron P of a mamfok
with marked boundary M is called a spine of M if:

»
» PUOIM is simple, !
* M\ (PUOJM) is an open ball, :
» PN aM is a graph contained in the marking of dM. E

Note that P is not in general a spine of M in the usual sense?. The complexiry of _“
3-manifold with marked boundary M is of course defined as the minimal number
vertices of a simple spine of M. Three fundamental properties extend from the clos
case to the case with marked boundary: complexity is still additive under connec
sums, it is finite-to-one on orientable irreducible manifolds, and every orientable i
ducible M with c¢(M) > 0 has a minimal special spine [MP0la]. (Here, a spine P C :
is special when PUJM is: the spine P is actually a special spine with boundary, wi ?{1
dP = OM N P consisting of all the 6-graphs in dM.)

8.5. Bricks

An important easy fact is that if M is obtained by assembling M and M3, and P; is |

spine of M;, then Py U P; is a spine of M. This implies the first part of the follow1=_
result.

Proposition 8.4 (Martelli-Petronio [MPO1a]). If M is obtained by assembling M, a &

M, we have c(M) < c¢(M,)+ c(Ma). If M is obtained by self-assembling N, we hav‘
c(M) < c(N)+6. ;

When ¢(M) = ¢(M)) +c(M2) or ¢(M) = ¢(N) + 6, and the manifolds involved ard}
irreducible’, the (self-)assembling is called sharp. An orientable irreducible marked
manifold M is a brick when it is not the result of any sharp (self-)assembling.

Theorem 8.5 (Martelli-Petronio [MPO1a)). Every closed orientable irreducible M is,' g
obtained from some bricks via a combination of sharp (self-)assemblings. ‘

There are only a finite number of such combinations giving the same M.

2To avoid confusion, the term skeleton was used in [MPOla].
3This hypothesis is actually determinant only in one case, see [MPO1a).
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Figure 6: If 4 edges disconnect G, then one of the two pieces is of one of thesc types.

#.0. The algorithm that finds the bricks

1he algorithm described in Subsection 7.2 also works for classifying all bricks of
Ivreasing complexity, with some modifications, which we now sketch. As we said
ihove, every brick with ¢ > 0 has a minimal spine P such that P JJM is special. The
4 valent graph H = S(PU M) contains the 6-graphs marking the boundary oM. By
aibistituting (i.e. identifying) in H each B-graph with a point, we get a simpler 4-valent
praph G. We mark the edges of G containing that new points with a symbol . It is
lhen possible to encode the whole P by assigning labels in S5 on the remaining edges
ul (5, as in Subsection 7.2. The spine P is uniquely determined by such data.

livery edge of G can have a label in S3 U {x}, giving 72" possibilities to analyze
duting step (1b) of the algorithm (actually, they are 27(3 + 1)?* by Remark 7.1). Al-
though there are more possibilities to analyze than in the closed case (72" against 627),
the non-minimality criteria for bricks listed below are so powerful, that step (1b) is ac-
tually experimentally much quicker for bricks than for closed manifolds. This should
he related with the experimental fact that there are much more manifolds than bricks.

Proposition 8.6 (Martelli-Petronio [MPOla]). Let P be a minimal special spine of a
hiick with ¢ > 3. The 3 faces incident to an edge e of P are all distinct. A face can be
mcident to at most one ©-graph in oP.

‘Theorem 8.7 (Martelli-Petronio [MPO1al). Let G be the 4-valent graph associated
1y« minimal special spine of a brick with ¢ > 3. Then:

(1) no pair of edges disconnects G;

(1) if ¢ € 10 and a quadruple of edges disconnects G, one of the two resulting
components must be of one of the forms shown in Fig. 6.

Point (ii) of Theorem 8.7 is proved (or ¢ < 9 in [MPOla] and conjectured there to
Ie true for all ¢: its extension to the case ¢ = 10 needed here is technical and we omit
1. We can restrict step (1b) of the algorithm to the useful 4-vaient graphs, i.e. the ones
that are not forbidden by Theorem 8.7. Table 8 shows that only 2.1 % of the graphs
are useful for ¢ = 10, 11.
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n 3 4 5 6 7 8 9 10 11

useful 1 2 4 11 27 57 205 1008 6549
all 4 10 28 97 359 1635 8296 48432 316520

Table 8: Useful graphs among all 4-valent graphs with n < 11 vertices.

8.7. Bricks with ¢ < 10. %

We list here the bricks found. There are two kinds of bricks: the closed ones, and tlﬁ

ones with boundary. The closed ones correspond to the closed irreducible 3-manifol&
that do not decompose.

Theorem 8.8. The closed bricks having ¢ < 10 are:

o (8%,(2,1),(3,1),(m,1),—1) withm > 5,m # 6, having c = m;

¢ (8%,(2,1),(n,1),(m,1),—1) not of the type above and with {n,m} # {3,6}, {4
havingc=n+m—2;

S i L R L Wit E

* the closed hyperbolic manifold N.34 from Table 3, with volume 1.75712. ..
homology 7, obtained as a (1,—5,--3/2)-surgery on the chain link, havin
c=10.

Remark 8.9. The manifolds (S2,(2,1),(n.1),(m,1),—1) with {n,m} = {3,6} o
{4,4} are not bricks. Actually, they are flat torus bundles, whereas every other such
manifold is atoroidal. 1

3
In the following statement, we denote by N(a,B,y) the following marked mam-!
fold: take the chain link of Fig. 3; if o € Q, perform an x-surgery on one componentg

and if 0, = 0, drill that component and mark the new torus with the 6-graph contain%
ing the slopes ,i, and i 4+ 1. Do the same for B and ¥ (the choice of the components

does not matter, see Fig. 3).

Theorem 8.10. The bricks with boundary having ¢ < 10 are:

¢ =0: one marked T x [0, 1] and two marked solid tori;
¢=1: one marked T x [0,1];
¢ = 3: one marked (pair of pants)xS';

c = 8: one marked (D,(2,1),(3,1)), and N(1,—4,8C1);
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The complement M ol this link is a hyperbolic man-
ifold, On cach cusp, there are two shortest loops of
equal length, and hence two preferred 6-graphs, the
ones containing both loops. Up to symmetries of M,
therc are only 3 marked M’s with such preferred 0-
- graphs, and these are the ones with ¢ = 10.

._,_/

[
| l
o

N

Figure 7: The complement of a chain link with 4 components.

v W four bricks of type N(a., B,y), with (0, B,7Y) being one of the following:

(1,-5,00-1), (1,60°9,6(-2)), (6(-2,0(-2) 6(-2), (8(~2,6(-2) g(-2));

« 10z eleven bricks of type N(a., B, ), with (0, B,Y) being one of the following:
(1,2,00) with i € {~3,-2,—1,0}, (1,-6,60-1),

(=5,602 9(-1) (=5,61 (1)) (1,61, 0(-1)y,
(1,604, 6(-1)),  (2.6(-2) 6(-2), (6(=3),9(-1) g(-1)y,
and three marked complements of the same link, shown in Fig. 7.

Remark 8.11. Using the bricks with ¢ < 1, one constructs every marked solid torus.
I'iis construction is the layered solid torus decomposition [Bur03, JRO3]. An atoroidal
manifold with ¢ < 10 is either itself a brick, or it decomposes into one brick B of The-
viem 8.10 and some layered solid tori.

Remark 8.12. The generic graph manifold decomposes into some Seifert bricks with
« - 3. As Theorem 3.1 suggests, the only exceptions with ¢ < 10 are the closed bricks
listed by Theorem 8.8, and some surgerics of the Seifert brick with ¢ = 8.

Remark 8.13. Table 3 is deduced from Theorems 8.8 and 8.10, using SnapPea via a
python script available from [Pet].

Remark 8.14. The proof of Theorem 3.1 from [MP04] extends to ¢ = 10. One has to
check that the new hyperbolic bricks with ¢ = 10 do not contribute to the complexity
ol non-hyperbolic manifolds, at least for ¢ = 10: we omit this discussion.

We end this Section with a conjecture, motivated by our experimental results,
which implies that the decomposition into bricks is always finer than the JSJ.

Conjecture 8.15. Every brick is atoroidal.
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Moduli of continuity of Cannon-Thurston maps

Hideki Miyachi

Abstract

In this paper, we deal with the moduli of continuity of Cannon~Thurston maps
for Kleinian 2-orbifold groups with bounded geometry. As an application, we
cstablish the continuity of Cannon—Thurston maps when the corresponding rep-
resentations vary. We also obtain an estimate for a fractal measure of a set of
endpoints of leaves of a certain geodesic lamination.

I. Introduction

A Cannon-Thurston map is, by definition, a continuous map which is equivariant
nnder group actions (cf. §2.2). A typical example is a quasiconformal mapping which
appears in deforming a Kleinian group. In this paper, we will mainly concentrate on
¢ ‘annon-Thurston maps for geometrically infinite representations of Fuchsian groups.

Historically, J. Cannon and W, Thurston first described the existence of Cannon-
I'hurston maps for geometrically infinite representations as follows.

‘Theorem ([CT89]). Let S be a closed surface of genus g(S) > 2 and let N denote
« lyperbolic manifold which is an S bundle over the circle. Let S—Sand N> N
enote their universal covering spaces. Then, a lift of the inclusion S — N of the fibre
¥ extended as a continuous map from S! = 98 to S* = oN.

Since the action of the fibre subgroup of 7; (N) on S is naturally semiconjugate
lo that of 7;(S) on S! via the extension, the extension gives a sphere-filling curve
¢quivariant under the group actions (and hence, it is a Cannon-Thurston map). In
addition, they also dealt with a hyperbolic manifold with one geometrically infinite
cnd whose associated ending lamination is the support of the stable lamination of a
pscudo-Anosov homeomorphism on S. In this case, the limit set of the corresponding
Kleinian group is a continuous image of S'. As a consequence, they found it locally
connected. In [Min94], Y. Minsky developed their works and proved the existence of
(‘annon-Thurston maps for Kleinian surface groups with bounded geometry (see §4).

Recently, many peoplc observed several intriguing properties of the limit sets
ol Kleinian groups with bounded geometry (for instance, see [BJ97], [Min94] and
[Miy03]), and verified the existence of Cannon—Thurston maps for various classes of
Kleinian groups (cf. [Bow(2], {Flo80], [K1a99], [McMO01 |, {Mit98] and [Miy02]).
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Throughout this paper, we shall abbreviate Cannon—Thurston map by CT-map fop
the sake of simplicity.

1.1. Main Theorem

The aim of this paper is to give an analytic property of CT-maps for Kleinian 2;
orbifold groups with bounded geometry. Let I" be a Kleinian group and £(T') th;
infimum of the translation lengths of elements of infinite order in I". We say thatT" haf
bounded geometry if L(I') > 0. Denote by d, the spherical distance on C. f,!
*
The main theorem in this paper is the following: 3
Theorem 1.1. Let G be a finitely generated Fuchsian group of the first kind withou
parabolic elements acting on D = {z € C||z| < 1}, and let p denote a discrete faithﬁj
representation of G to PSLy(C). If p(G) has bounded geometry, the CT-map F for g
satisfies

d(F(x),F (7)) SA{log (h_in)}B forxy D, ﬁ

where B > 0 depends only on L{p(G)) and the topology of D/G. Furthermore, whenr
p(G) is geometrically infinite, F is not Holder continuous. '

We note that A > 0 in Theorem 1.1 is determined by £(p(G)), the topologﬁ
of D/G, the hyperbolic distance between O = (0,0,1) € H?> and the convex hullg
CH(p(G)) of the limit set of p(G), and the distortion dis(G,p) of G in terms of p;
where the last constant will be defined in §3. In fact, one can take A as "

A = A% (0CHRO) 4ig(G, p)B (1.1)

where A is dependent only on L(p(G)) and the topology of D/G (see §5.2.1, §5.2.2,
§5.2.3, and Remark 5.6).

Modulus of continuity The modulus of continuity modr of a continuous map F
between metric spaces (X,dy) and (Y,dy) is a function on R>q defined by

modp(t) := sup{dy (F(x1),F (x2)) : x1,x2 € X, dx(x1,x2) <1}.

We here regard CT-maps as continuous maps between two metric spaces (), | -|) and
(C,d,). Then, by Theorem 1.1, we establish an estimate of the moduli of continuity
of CT-maps as follows:

Corollary 1.2 (Modulus of Continuity). Let F be the CT-map for a faithful discrete
representation with bounded geometry. Then,

modr (£) = O(|log #| %),
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wherve B is the constant in Theorem 1.1,

1.2. Corollaries
In this section, we collect together some results derived from Theorem 1.1.
1.2.1. Families of Cannon-Thurston maps

We will give a rigorous proof for the following folklore in §6.1.

Corollary 1.3 (Continuity). Let {pn}ncn be a sequence of discrete faithful representa-
tons of G to PSLy (C) with L(p,(G)) > €0 for some €y > 0. Let F, denote the CT-map
for py. If pn converges to a representation p.. algebraically, then F, converges uni-
formly to the CT-map for po.

We note that, under the assumption in Corollary 1.3, the limit set of p,(G) con-
verges to that of p(G) in the Hausdorff topology (see [ AC96] and [AC00]). However,
this convergence does not immediately lead to the convergence of CT-maps.

The condition on injectivity radii in Corollary 1.3 can not be entirely removed. In
lact, there exists a sequence of quasifuchsian groups such that its algebraic limit is
a4 peometrically finite group with parabolic elements and the limit sets of the quasi-
luchsian groups do not converge to that of the limit group in the Hausdorff topology
(v[.[McM99]). Meanwhile, the author believes that the conclusion of Corollary 1.3 is
also valid without the bounded geometry condition when the limit group contains no
{uccidental) parabolic elements and admits a CT-map.

In §6.3, we also deal with a family of representations defined by iterations of a
‘Teichmiiller modular transformation induced by a pseudo-Anosov homcomorphism.

1.2.2. Approximating Peano curves by Polygonal curves

l.et F : 8D — C denote a CT-map as above. For a partition x = {x}71} on oD with
\nt | = Xp, we define a continuous map F(-;x) : dD — C such that for k = 0,...,n,
I'(-;x) maps monotonically the interval [x;,x;.] to a spherical geodesic from F(x;)
to F(xp4) at constant speed. Then, we obtain a guarantee of quality of a polygonal
curve F(-;x) as follows (cf. §7. See also §16 of [CT89]).

Corollary 1.4 (Approximating Peano curves). 7he following holds:
maxd,(F (y;x),F(y)) = O(|log D| "),
yeD

where D = maXo<k<n [Xk+1 — x| and B > 0 is as in Theorem 1.1.
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1.2.3. Generalised Hausdorff measures of sets

W. Dicks and J. Porti [DP02] and T. Soma [Som95] studied mcasurements of certain
subsets of $2 related to the actions of Kleinian groups. Using our main theorem, wé
will deduce the following in §8.

Corollary 1.5. Let B be as above. For E C 0D, the following statements hold.

(1) If the Hausdorff dimension dim(F (E)) of F (E) is positive, then the generalised;
Hausdorff measure of E with the gauge function |logt|™" is infinite for b <g,
B dim({F(E)). ’1
(2) The Hausdorff dimension of F(E) is zero, when the generalised Hausdorff mea-g
sure of E with the gauge function |loglog(1/it])|~" vanishes. 3

¥

Let A be a geodesic lamination on a hyperbolic surface of finite area, and A the lif i
of A on the universal cover D. Using J. Birman and C. Series’ result in [BS85], we§
deduce that

E(A):=u{dl CcdD:lisa leaf Of’;\.}

has Hausdorff dimension zero (cf. §5.1). From Corollary 1.5 and Proposition 5.1, we
obtain an (opposite) cstimate for its fractal measure as follows. ‘

Corollary 1.6. Let A, denote the ending lamination of a singly degenerate group with 4
bounded geometry. Then the generalised Hausdorff measure of E(A,) with the gauge'
function |logt|~" is infinite for b < B, where B > 0 is the constant in Theorem 1.1.
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1. Notation
1.1. Kleinian groups.

A Klcinian group is a discrete subgroup of the group of isometries of the hyperbolic
V \pace (H3, dggs ). We mainly discuss the upper half-space model of the hyperbolic 3-
space in this paper. The limit set Ar of a Kleinian group I' is the set of accumulation
points of the orbit of a point in FI3. A Fuchsian group is, by definition, a Kleinian
proup whose limit set is contained in a round circle, and is said to be of the first
hind il its limit set coincides with the whole circle. By a Kleinian 2-orbifold group,
we mean a Kleinian group isomorphic to a finitely generated Fuchsian group of the
fust kind with no parabolic elements. A torsion-free Kleinian 2-orbifold group is
valled a Kleinian surface group. An end of a hyperbolic manifold N is said to be
peometrically infinite if all of its neighbourhoods intersect the convex core of N. A
Imitely generated Kleinian group I is said to be geometrically infinite if some end of
I:*/I" is geometrically infinite. Otherwise, I is geometrically finite.

Let I' be a Kleinian surface group and let S denote a closed surface of genus g($) >
? such that m;(S) is isomorphic to I. By Bonahon’s tameness theorem ([Bon86]),
any isomorphism p from 7;(S) to I is induced by a homeomorphism from § X R to
Ny = HB /T. Anend E of Nr is said to be positive (resp. negative) if the image of
N < R5g (resp. S x Reg) under the homeomorphism is a neighbourhood of E.

By a degenerate group, we mean a geometrically infinite Kleinian 2-orbifold group
without parabolic elements. A degenerate group is said to be singly (resp. doubly)
degenerate if its limit set is not the whole sphere (resp. is the whole sphere). If we fix
2 hyperbolic structure ¢ and an isomorphism p of 7t (S) to a torsion-free degenerate
proup I', we associate a geodesic lamination on (S,5) for any end of Nr, which is
called the ending lamination of the end (cf. [Bon86] and [Min94]).

2.2. Cannon-Thurston maps and their basic properties

lLet G be a Kleinian group and p a representation of G to PSL,(C). By a Cannon-
‘Thurston map (we abbreviate by CT-map) for p, we mean a continuous map F : Ag —
 with the equivariance:

p(g)oF(z) = Fog(z) @.1)
forallg e Gandz € Ag (compare1 [Bow02], [K1a99], and |[Mit98]).

The following lemma might be well-known. However, we shall sketch a proof for
the sake of completeness.

'In discussing CT-maps, we ordinary recognise G as an abstract (hyperbolic) group and Ag as its Gro-
mov boundary. However, in this paper, we adopt G as a subgroup of PSL,(C) and Ag as its limit set in C.
The author hopes these differences make no confusion for readers.



Lemma 2.1. Ler G be a finitely generated non-elementary Kleinian group and 9
G - PSL(C) a discrete faithful representation. Then, the following statements hold

(1) If two continuous maps h(,h; on Ag satisfy (2.1), then hy = hy.

(2) Let H be a normal subgroup of G. If p |y admits a CT-map, so does p.
Proof. (1) Let g € G be a loxodromic element and let z € Ag denote its attractini
fixed point. By the discreteness of p(G), p(g) is either loxodromic or parabolic. Fronia,
(2.1), one can check that h;(z) is cither the attracting fixed point of p(g) 1f p(g) lsi
loxodromic, or the fixed point of p(g) otherwise. In any case, we have hi(z hz(z),
and hence A; =: hy by the density of fixed points in Ag.

(2) Let F denote a CT-map for p |p. Since Ag = Ay (cf. Lemma 2.22 of [MT98]),‘"
it suffices to show that for all g € G F, := p(g~!) o F o g coincides with F on A(;4 ;
Indeed, for h € H, we set ' := ghg™! € H. Then -‘ 4
Fyoh=p(g™)oFo(gh) = p(g~')oFo(Kg)

= plg™)op(H)oFog 3

p(hg™')oFog=p(h)oF,

From (1), we have F, = F on Ag. of

By Minsky’s theorem in [Min94] (cf. §4.3) and (2) of Lemma 2.1, we have

Corollary 2.2. Every isomorphism from a Fuchsian 2-orbifold group to a Kleinian 2
2-orbifold group with bounded geometry admits a unique CT-map. b

Remark 2.3. Throughout this paper, G will be a Fuchsian surface group or an orbifold ‘

k<

group and therefore its limit set Ag is always the same as dD, which is a circle. Thus,
all CT maps will be maps from a circle to the sphere.

3. Distortions

In this section, we will define the distortion of a fuchsian group G in terms of a repre-
sentation p of G to PSL,(C). We first define it in the case of Fuchsian surface groups
(§3.1.2). Afterwards, we treat it in the case of Fuchsian orbifold groups (§3.2). We §
will study the behaviour of distortions for a convergent sequence of representations

(§3.1.3).
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L1, Distortions: The case of Fuchsian surface groups
\L.1. Pleated surfaces

| ¢t ¢/ be a Fuchsian surface group acting on . Denote by S the underlying surface of
Ir/¢; and by projg the projection D — S. Set p = projg(0). Then we have a canonical
Wdentilication

& : G — m(S,p), 3.1

lom the covering theory.

l.et p : G — PSLy(C) be a discrete faithful representation and I" = p(G). A pleated
surface of Nt is a map f: S - » Nr together with a hyperbolic metric oy, called the
mduced metric, and 6¢-geodesic lamination A on S, so that the following holds: f is
length-preserving on paths, maps leaves of A to geodcsics, and is totally geodesic on
the complement of A.

I'roposition 3.1 (Bonahon and Thurston). Suppose I as above® Then any point in
the convex core of Nr is contained in a By neighbourhood of the image of a pleated
virfuce, where By > 0 is a universal constant.

For more details, see [Bon86], [CEG87], and [Min01].

We denote by np(p) the nearest point to O = (0,0,1) € H* in the convex hull of
Ar. Notice np(p) = O when O is in the convex hull. 'Let pleat(p,R) denote the set
of all pleated surfaces of Nr inducing p such that each of their R neighbourhoods
contains the projection of np(p). By Proposition 3.1, pleat(p,b) £ 0 for b > By.

3.1.2. Definition of Distortions

We first note that for a 1t;-injective continuous map f : § — Nr with f; = p, there is
i unique lift f: D -~ H? of f with p(g) of = fog for g € G, since the centre of I is
wrivial. Set be(f) := £(0). We next notice that for a diffeomorphism W of  isotopic
to the identity and a pleated surface f of Ny, f oy is also a pleated surface with same
image as f and its induced hyperbolic metric is equal to the pull-back of 6 via y.

Let f be a pleated surface in pleat(p, By) with
dy> (np(p),be(f)) < Bo+ 1. (3.2)

Such a pleated surface with (3.2) in pleat(p, Bp) exists by virtue of Proposition 3.1 and
the observation above. Denote by prg, : D — (S,0¢) the hyperbolic universal covering

ZNotice here that T is isomorphic to a closed surface group. Proposition 3.1 is also valid in the case
where § admits puncturcs. However in such case, we has to impose an additional condition on p that it
preserves every peripheral parabolic subgroups.



projection with P, (0} = p and by G its covering transformation group. Then, therg
is a canonical 1dent1ﬁcanon 7, (S, p) = Gy. Therefore, we obtain an isomorphism

(V;f ZG—>Gf (3.3).

by composing (3.1) and the identification above. Note that a quasiconformal mapping.
wo : (D/G,p) — ((S,0y),p) isotopic to the identity rel p induces a quasiconformal-
mapping w of D with w(0) =0 and §(g) ow =wogforg € G:

AT TR S

D —“- D
w(0)=0
projsl lpfuf (3 4)
D/G —2%= (S,0¢).
wo(p)=p

Let dis¢(G,p) denote the infimum of the maximal dilatations of quasnconformal

mappings w : D — D with w(0) = 0 and §(g) ow = wo g for g € G. We define the
distortion dis(G, p) of G in terms of p by

TR I ARV R TOPEE—

dis(G,p) = infdis;(G.p), (35) §
where f runs over all pleated surfaces in pleat(p, By) satisfying (3.2).

The following proposition follows from the definition of distortions.

Proposition 3.2. There exist a pleated surface f : (S,0¢) — Nr in pleat(p,Bo) and a 1 
2dis(G,p) quasiconformal mapping w of D such that

dig3 (np(p),be(f)) < Bo+1,

w(0) =0, and Ef(g)ow =wogforg € G.

3.1.3. A Property of Distortions

We will need the following proposition to show the continuity of Cannon—Thurston '
maps when representations vary (cf. §6.1).

Proposition 3.3. Let {p,},_, be a sequence of faithful discrete type-preserving rep- :
resentations of G. When p, converges to a type-preserving representation P.. alge- |
braically, distortions dis(G, p,) are uniformly bounded.

Proof. Take a pleated surface f, : (S,0,) —» os(G) S in Proposition 3.2 for all n. '
Denote by G, the covering transformation group associated to f, as above. Let f,: 1
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I il denote the lift of f;, with p,, ()E,./-"' (2) of',, = f,, o g for all g € G,. By definition,
if,) - }7,,(0). Since the convergence p, — Poo is type-preserving, it is strong (cf.
JAC'Y6] and [ACO00], see also [Thu80] and [Ohs92]). In particular, by (3.2),

ds (fx(0), 0) < Mo (.6)

where M is independent of n. Thus, f,(p) is in the projection of the hyperbolic ball
ol centre O and radius M.

We here claim the following.

Cluim 3.4, A sequence of pointed hyperbolic surfaces {((S,0,),P)}; contains a
wiuhsequence which converges to some ((S,0),p) geometrically.

I'mof. Fix a constant € > 0 which is at most the half of the Margulis constant. From
1 1.0), by taking ¢ sufficiently small, we may suppose that p is in the e-thick part of
(¥,0,) for all n. Let S, denote the component of 2g/3-thick part of (S,6,) which
contiains p. Since S, has uniform diameter and p, — p strongly, by choosing a
wubscquence in an appropriate way, we have an M| > 0 which is independent of n
wich that the lengths of geodesics in H? /p..(G) corresponding to curves in 95, are at
most € for sufficiently large n, and their e-Margulis tubes intersect the projection of
the hyperbolic ball of centre O and radius M.

Thus, when (S,0,) contains a curve ¥, whose length tends to 0 as n — co, po(G)
lias to involve an accidental parabolic element, which contradicts our assumption that
.. is type-preserving. Consequently, {((S,0,),p)};, is precompact in the geometric
topology. (]

We next claim:
Claim 3.5. {&f,}°_| contains a subsequence which converges to a representation of
(s.
I'roof. Let &y : ((S,0w),p) — ((S,0n),p) denote an g,-approximation with €, — 0.

Let G be a system of generators of 71 (S, p). Take a positive constant £ so that for
all elements y € G, the length of the geodesic representative of yin (S, G.) with base
point p is at most £. Let hy , denote an element in G,, corresponding to (§)«(y). Since
iy (0, hyn(0)) < (1 +€4)¢, {Byn}pe; is precompact in Aut(ID). Furthermore, because
f,, is 1-Lipschitz, by (3.6),

dis(0,0n 0, (y)(0) < 2Mo+ dis (F(0), ola(0)))
< 2Mo + d5(0,hy4(0))
< 2Mp + (1 +¢,)¥.
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Hence {p, o §j7"' (hyn)}y . is also precompact in PSLy(C).

For the sake of simplicity, we set gy, := E_,IT"I (hyn) € G. Suppose {Pn(8yn)}nay
converges to T, € PSLy(C). Since p, — po. strongly, there is gy € G such that
To == Poo(gy,0). On the other hand, since P (gye) — Peo(gy,) a8 1 — 00, Pn(8y,0 0 &y, ,‘,)
converges to the identity in PS1.5(C) as n — oo. By applying Jgrgensen’s inequality to
Pn(gyno gy,'.,lo) and Py (gy-), we see that pn(gy) and pr(gye) generate an elementary;
group for sufficiently large n. Since any elementary subgroup in G is cyclic and p, ia'ig
an isomorphism, there cxist an element gy € G and mp,me € Z such that gy, = go

and gy = go - q
Let 1g, be the complex translation length of p,(go). Then the square of the tracé§

of pn(gyn) satisfies E
ITe2pn(gyn)| > 4cosh?(m,Re(lg,)/2). € 7)’6

Since p.. is type-preserving and p,(go) — Pe(go), P-(go) is not parabolic and Re(lgn) '
is bounded below by a positive constant independent of n. Thus, m, should be uni<}
formly bounded because Pn(gy,n) converges to Poo(gy.oo). ';
We now see that {m,};>_, is bounded. After passing to a subsequence if nec-}
essary, we can suppose that all m, are equal. Then gg" = g:)""' for n,n’ > 1 and
Pa(ge” ™) = Pn(8ynogy, L) converges to the identity. Hence we deduce that m, = m‘,‘,J
and gy, = gy, equivalently &y, (gye) = by, for y € G and sufficiently large n. Since
{Myn}tyeg generates Gy, {gyw}yeg also does G. Thus, Claim 3.5 derives from the"?
precompactness of {hy,}s; forallye G . El‘i
"
We now return to the proof of Proposition 3.3. By Claim 3.5, we may suppose
that dis(G, p») tends to sup,cy dis(G, pn) and &y, converges to a representation & of
G as n — oo, We denote by w, the extremal quasiconformal mapping on D which
commutes with &, (see [IT92]). Since &£, — &, the Teichmiiller classes of {w};_; 4
are precompact in the Teichmiiller space of S. Hence the maximal dilatation of wy, is } ;
uniformly bounded and (after passing to a subsequence, if necessary) w, converges ;
to a quasiconformal mapping w. which commutes with .. In particular, the set’
{wn(0)};-_, is hyperbolically bounded in ID from the origin. Thercfore, one can finda
quasiconformal mapping W, of D such that W, 0 g(z) = goW,,(z) forz€ D and g € G,,,
W, (wn(0)) =0, and its maximal dilatation is uniformly bounded. Since dis(G,p,) is
at most the maximal dilatation of W, o wy, the distortions are uniformly bounded. O

Remark 3.6. The following is a typical example of representations whose distor-

tions diverge: Fix a faithful discrete representation p of G and let g € G be a hyper- |
bolic element. Let &, : G — G be an isomorphism defined by &,(h) = g"hg™". Then }
{Pn}ey = {po&n}ne, is a desired sequence. Indeed, in this case, the corresponding
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uasiconformal mapping wy, for &, as §3.1 sutisties w,(0) = 0 and coincides with g” on
ol modulo composition with quasiconformal mappings of uniformly bounded maxi-
mul dilatations. One can check that the maximal dilatation of w, diverges as n — oo,
ikl henee so does dis(G, p,). We note that CT-maps for {p,};._, are not convergent,
sinee the CT-map for p, is F o g".

1.2, Distortions : The case of orbifold groups

| ¢t ¢; be a Fuchsian 2-orbifold group with presentation

g m
(= <a1,--- ,Qg, b1, bg,er, - em | H[ai,bi]nei =el=.=¢m= 1>
i=1" =1

I nder the notation, we set

2-LCM{ny, - ,ny) if G includes torsion, i.e. m > 1,
1 otherwise.

Index(G) := {

According to [EEK82], G contains a Fuchsian surface group of index at most Index (G).
‘Then, for a faithful discrete representation p of G to PSL;(C), we define the distortion
dis(G, p) of G in terms of p by

dis(G,p) := ilr}fdis(H,p l#1)s (3.8)

where H runs over all Fuchsian surface subgroups in G with [G : H] < Index(G).

4. Model manifolds and Cannon-Thurston maps.

Following Minsky [Min94], we shall recall briefly the definition and relevant prop-
criies of model manifolds of hyperbolic manifolds associated with Kleinian surface
proups with bounded geometry.

4.1. Model manifolds

l.et I' be a Kleinian surface group with bounded geometry and p an isomorphism
p: G — T. We identify G with 7t; (S, p) by (3.1). Notice that the injectivity radius g
of N is half of L(I'). Here, we assume that the projection of O is in the convex core
ol' Nr and fix a pleated surface fo : (S,65,) — Nr as Proposition 3.2. Let e, (resp. e_)
denote the positive (resp. negative) end of Nr.

e Case of quasifuchsian groups For s = =+, let f; : (S,0;) — Nr be the pleated
surface corresponding to the component of the boundary of the convex core of Mr
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facing the end e, with (f;)« = p. Consider a Teichmiiller geodesic L ¢ ‘Itich(S) from,
[0-] to [0,.], where | -] expresses the Teichmiiller class (cf. [IT92]).

By Theorem A of [Min93}, there is {6g] € L such that d7([co], [05]) < Ao, where
Ap = Ao(€0,8(S)) > 0 and dr is the Teichmiiller distance on Teich(S). Set dy :=
dr{|oo],{o=]) and let ®¢ denote a holomorphic quadratic differential on (S, 0p) asso«
ciated to L with L!-norm one. We here notice that there is an ambiguity of choosing a.
representative 6p. In fact, it will be taken appropriatcly in §5.2 (see also §5.2.3). :

We define a singular metric ds2 on S x R by

elZ-2d-(o=2d-gx2 4 24-gy?) +-di? (1< —d.)
dt={ Fdteap Lar (-d_<t<d,) .
e2t—2d+ (62d= dx2 + e—2d+dy2) +dt2 (t Z d‘f ) ;

1
H
kS
«

away from the zeros of ®¢, where dx (resp. dy) is the measure in the horizontal (resp.
vertical) direction of ®y.

o Case of degenerate groups Without loss of gencrality, we may assume that e, is:
geometrically infinite. If I' is singly degenerate, we denote by f. : (S,0 .) — Nr the
pleated surface corresponding to the boundary of the convex core. :

By applying Theorem A of [Min93] again, there is a geodesic ray (if I" is singly "}
degenerate) or a geodesic (if I is doubly degenerate) L such that for any pleated sur- -
face f with f. = p, there is lo! € L such that dr([o], [o7]) < Aq. Let [oo] € L with |
dr([oo],[0,]) < Ag and Py as above. We note that L is defined to emanate from [c_] "
(see [Min93]). Set d_ := dr([c ], [o0]) "

The singular metric dsZ on S x R is defined by

g2y (e dl vt dy) valt (1< -d)
r= e¥dx* + e~ dy* + dt? (—d_- <t <o)

when I is singly degenerate, or by
dst =d? +e72dy? +di* (1 R)
otherwise, where dx and dy are taken as the case of quasifuchsian groups.

o Model manifolds. In any case, let M denote the path-metric space (S x R, ds%).

Theorem 4.1 (Minsky [Min94]). There is a liftable (K,x) quasi-isometry f : Mr —
Nr such that f = p and f |5, (0y= fo, where K and x depend only on €y and g(S).
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4.2, Universal covering space of M

Next we describe the universal covering space of Mr. Let Go be the Fuchsian group
wting on D which uniformises (S,0¢) as in §3.1. Then the universal covering pro-
jection prg. : D — (8,00) (cf. §3.1) induces the covering map IT: D xR — S x R.
Iy pulling back the model metric ds2 we get a path-metric space M = (D x R,d5%)
mul recognise IT as a locally isometric projection from M to Mr. Furthermore, the
vovering transformation group is

{(Z,t) = (g(z)’t) ‘8 € GO}'

4.3. Cannon-Thurston maps

We here think of p as an isomorphism from Gy to I" by precomposition with F,}o'
{see (3.3)). By Theorem 4.1, we have a (X, k)-quasi-isometry F : M — H? satisfying
/11 := projo F and F(g(z),t) = p(g) o F(z,t) for all g € Gy, where proj : H> — Nr
i the covering projection. Since f | sx{0y= Jo (but not path-isometric with respect to
ihe model metric), by (3.2),

dH3 (F(q())’ O) =dyp (bc(fO)anP(P)) <Bi+1, “4.1)

where go := (0,0) € M.

In [Min94], Y. Minsky showed that F is extended continuously from d(D x R)
onto C. Furthermore, he also obtained that the restriction of the extension to 9D x {0}
pives the CT-map from dD) (= Ag,) to the limit set Ay of I'. By abuse of notation, we
denote this CT-map by F.

4.4. Geometry of M and F

Lct ¥ be a closed geodesic with respect to the |®o|-metric on S. We take a lift ¥ of y on
i). Then ¥ is a simple curve on ID.

LLemma 4.2. YxR C M is Ky -quasiconvex, where K| depends only on &, g(S) and
the |®y|-length of y.

A set C is said to be Kj-quasiconvex if every geodesic connecting any two points
of Cis in a K neighbourhood of C.

Proof. Notice from Theorem 4.1 that M is A = A(go, g(S))-hyperbolic. Let [y be the
!dy|-length of y. Because any vertical line {p} xR is a geodisic in M, it suffices
to verify that ¥ x {0} is K, = K, (g, 9(S),lp)-quasiconvex in M. Indeed, let p; =



(x1,01), p2 = (x2,12) € Yx R and p,p; be a geodesic in M connecting p; and ps. Lel'..%
g1 = (x1,0) and g2 = (x2,0). Since M is A-hyperbolic, p; p, is contained in an R/ =,
R’(A)-neighbourhood of p1g1 Ugq192Ug2ps. Since pi1g1,g2p2 C¥x R, whenyx {0} .

is K;-quasiconvex, the geodesic p;p2 is contained in an R’ + K;-neighbourhood of -
TxR. .

We shall check the quasiconvexity of ¥ x {0}. Let ng be an intcger with Xx/gy + ';
1 <np < Kx/€y-+2 and g an element in Gy corresponding to . Fix a point xo € Yand :
set X, := g"(xo). Then i

dﬂ((x()vo)’(xkno,o)) > %dﬂ3(F(x0’0),F(xkno7O)) —K ‘:

= i (F(x0,0),p(2)!% o F(x0,0)) ~

> }k|n0£0/K —K

> [k] (Kc-+0) /K — Kk = Jkleo/K + (k| — 1)k
forall k € Z.

Let ¥ : R — D denote the |®pj-length parametrisation of ¥ with ¥o(0) = xo. We
think of Yo as a distance non-increasing map R — M with Yo(R) =¥x {0}. Let py, p2 €
¥ x {0}. Take k; € Z such that p; is contained in the part of ¥ x {0} between (xg,n,,0)
and (X(x,4 1)y 0). Let s; € R with Yo(s;) = p;. Then

dii(Yo(s1),%0(s2)) > diz (Yo(k1nolo), Yo (kz2nolo))
—di(Yolk1nolo),Yo(s1)) — diz (Yo (kanolo), Yo (s2))

Z d]l? ((xkl "0’0)7 (xkzn()‘lo)) —nolo — nolp
> lky - -kaleg /K —2nplo.

e e AR L A R 1L Ky Ba b s 600 el

NIPNUL SRR 3 °eY

i s e otk £ i3S AP LAk LSl T

Since k,'n()l() <5< (k,' —+ 1)n()lo,

iS1 - 52l < Ik]ﬂ()l() - kzn()l()| +2nplp < n()l()(lkl — k2i + 2).

Therefore, we obtain

€
|51~ 52 = 2(e0/K + nol)
1.4

€
> T Tkt %21~ 260/ K + (K/e0-+ 2)l),

diz(Yo(s1),%0(s2)) >

no

which means that ¥ x {0} is a pseudo-geodesic in the sense of Bowditch [Bow91].
Hence, by Proposition 4.9 of [Bow91], ¥ x {0} is K;-quasiconvex, where Kj > 0 is
dependent only on K, K, A, €, and J. Since all constants K, k. and A are dependent
only on & and g(§), K is the desired constant. O

st ot S e s -



Assume that ¥ does not pass through the origin 0 € . Denote by Hy the component
Wiy~ R -yx Rwithgy- (0,0)¢ I, Let &y be the lift of ®o on D. We will use the
[llowing estimate in the next lemma: Any geodesic segment y in H? satisfies

diam,(y) < 2/sinhr (4.2)

when diga (0,y) > r, where diam,(-) denotes the spherical diameter which is measured
i the unit ball model of H? (under the identification O corresponds to the origin).
lideed, we may observe (4.2) for ID instead of the unit 3-ball by cutting with the
hyperplane in R3 passing through the origin and the endpoints of y. Let zo € ¥ is the
nearest point to 0 € D. By the convexity of v, there is a disk Dp such that dDy intersects
JI al two points orthogonally, Y C Dy and zg € dDg. One can take Dy such that its
l:nclidean radius is 1/ sinhdp (0, zg), which is what we wanted.

l.emma 4.3. There exist positive constants Cy and Rydependent only on €, g(S), and
the |®g|-length ly of ¥ such that when d|3,0|(0,7y') > R > Ry, the spherical diameter

diam, (F (Hy)) is at most CoR /4K
I'roof. From the proof of Lemma 7.3 of [Min94], we know
diz(qo,Hy) > min{(logR)/4,\/E} = (logR)/4
when dig | (0,Y) > R. Therefore, by (4.1), we have
dys(O,F(Hy)) > (logR)/4K — (x+B1 +1)

for R > 0. Since F(Hy) is K| = K1 (K, K, lp)-quasiconvex in H3 by 4.2, any geodesic
Y connecting two points in F(Hy) is at least (logR)/4K — (k+ By + 1) — K| far from
the origin O. By (4.2), we conclude

2 < CR™VK

diame (F(Hy)) < G g RY 4K — (ks Br + 11 K1) =

for R > Ry, where C and R| are dependent only on €y, g(S), and /. O

5. Proof of Main Theorem

Let G be a Fuchsian 2-orbifold group acting on D) and p a faithful discrete representa-
tion of G to PSLy(C) such that I" = p(G) has bounded geometry. Let F be the CT-map
for p.
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5.1. Cannon-Thurston maps are not Holder continuous

We check that the CT-map for a geometrically infinite representation is not Holder.
continuous, To show this, we can suppose that G is a Fuchsian surface group because
G COl’ltdil‘lS a torsion free subgroup with finite index. Let A be a geodesic lamination on
D/G and A its 1ift on ID. Recall from §1 that E(A) C oD denotes the set of endpoints
of all leaves of A.

a

Let A, denote the one of the ending laminations for p. Since the image F(E (Xe));:
contains infinitely many quasi-arcs3 (cf. [Miy03]), we have ;

Proposition 5.1. The Hausdorff dimension of F(E(A,)) is at least 1.

By virtue of Birman and Series’ theorem in [BS85], the set of endpoints of leaves
of A, in D x dD has Hausdorff dimension zero. Since E (A.) is its Lipschitz image -
(via the projections to the coordinates), E(A,) also has Hausdorff dimension zero. .
Hence, we conclude the following, '

Corollary 5.2. The CT-map is not Hélder continuous if p is geometrically infinite.

5.2. Reductions

In this section, we shall explain how the special case in Theorem 1.1 (Proposition 5.5)
induces the general case. This consists of three sections (§5.2.1,§5.2.2 and §5.2.3) and
one remark (Remark 5.6 in §5.3). In any case, we are mainly concerned with how the
dependence (1.1) of the constant A in Theorem 1.1 is derived.

5.2.1. Reduction: The first stage

We first note that we may assume that G is a Fuchsian surface group. Indeed, when G
contains torsion, we may consider a torsion free subgroup H with [G : H]| < Index(G)
and dis(H,p |n) < 2dis(G,p) instead of G for our purpose (see (3.8)).

5.2.2. Reduction: The second stage

We may assume that O € CH(p(G)). Indeed, to obtain the dependence (1.1) of con-
stants in Theorem 1.1 under the condition O ¢ CH(p(G)), we claim the following.

Claim 5.3. Let E be a set in C such that its convex hull CH(E) (in H?) does not .
contain O and set d = dyz (O,CH(E)). Then there is a Mibius transformation T such
that d,(z1,22) < Cee™4d.(T(z1),T(z2)) for 21,22 € E and CH(T(E)) > O, where Cs
is a universal constant.

3In [Miy03), the author stated this result only the case when I is singly degenerate. However the proof
is also available for the case of doubly degenerated groups.
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Belore proving this claim, we explain the reduction in this case. Assume the con-
v core CH(p(G)) does not contain O. Take T as in Claim 5.3 for F(dD) = Ay
winl consider the composition T o F, Notice that T o F is the CT-map for a new repre-
asiitution g +— Top(g) oT~! and O € CH(T o F(dD)). Thus, when Theorem 1.1 and
the dependence (1.1) in the case where O is in the convex hull are correct, so are the
vitwe of O ¢ CH(F(JD)) because

do(F(21),F(22)) < Coe~ 43 OCHPON g, (T o F(21),T 0 F(22))

Il .20 €0D.

Proof of Claim 5.3. Let py € CH(F(dD)) be the nearest point to O. Because of the
convexity of CH(F (D)), there are half-spaces Ho and H including CH(F (9D)) such
i O € 8Hy, np(p) € 0H,, and each oH; is perpendicular to the geodesic passing
thrtough O and pg. After composing a rigid motion T of (@, d.) to F, we may suppose
thit 1yNC =D and the centre of the disc H; NC is the origin 0 € C. Let Ty (z) = ¢%z.
Ien T := Ty ' o Ty o Ty satisfies the desired property. O

§.2.3. Reduction: The third stage

I+ explain the third reduction, we shall fix notations. Take f; € pleat(p, By) as Propo-
wition 3.2, Let §f0 : G — Gy, be the natural isomorphism as in §3.1. Then, there is a
iiasiconformal mapping wo of ID such that &, (g) owp = wyo g for g € G, wp(0) =0
and the maximal dilatation of wy is at most 2dis(G,p). Take [op] € Teich(S) with
di'ogl,'6,]) <A (see §4.1). Let 6 be a representative of [Gg| such that the identity
mapping'id : § — S is a 2A4¢-quasiconformal mapping from (S,64) to (S,00). Let Gy
he the Deck transformation group of prg, : D — (S, 00) as §4.2. Then dis(Gy, p) < 240
since the lift wy of the identity mapping is a 2Ay-quasiconformal mapping of I which
commutes with an isomorphism &g : G, — Go, and satisfies w;(0) = 0.

We recall Mori’s 16-theorem (cf. [Mor56]):

‘Theorem 5.4 (Mori). Let w be a K-quasiconformal homeomorphism of D with w(0) =

). Then w satisfies
|

w(x) —w()| < 16x—y| /¥
forx,y € ﬁ

Since w :=wj owg and § := g o &, are a 4A(dis(G, p)-quasiconformal mapping
and an isomorphism from G — Gy which satisfy that E(g)ow =wog for g€ G
andw(0) = 0, w satisfies

[w(x) —w(y)| < 16]x — y|!/(H0dis(G:)) 5.1)
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by Theorem 5.4. ;

We are now ready to discuss the third reduction: We claim here that it suffices uq
prove Theorem 1.1 only for Gy, po&~! and Fow™! |3p instead of general G, p an‘
F. Indeed, when we consider Go, Fow™! |3p and po&~! instead of G, p and F, th#

constants A and B in Theorem 1.1 are dependent only on gy and g(S) (see Proposmot

5.5 and Remark 5.6). By (5.1), we conclude 5
4.(F(3),F()) = de(F ow™ (w()).F ow™ (w(»))) !

3 -B lg

<A< £

= {°g(|w( )— <y>|>} ¢

cumtonton(525)}

for |x - y| < (3/16)*40dis(G:p) =: §;, where A, B, and A; depend only on ) and g(S)

Y o

We next check the dependence of the constants. Consider a function
D x aD 3 (x,y) — de(F(x), F(»)) [log (3/|x— y|),? (5.2]

The function (5.2) does not exceed A,dis(G,p) if [x —y| < 8;. When |x —y| > &, §

de(F (x),F(y)) llog (3/|x— y|)|® < diam,(C) x [log (3/8,)[®
< A3dis(G,p)?,

where A3 = A3(go,8(S)) > 0. Thus, by adopting
max{A2,As }dis(G, p)? (5.3

instead of A, we establish the desired inequality.

5.3. Estimation of modulus of continuity

From §5.2.1 and §5.2.2, we may assume that G is a Fuchsian surface group isomor-
phic to 7, (S) and the convex hull CH(p(G)) of p(G) contains O. Furthermore, from|
§5.2.3, we may also suppose that G, p and F are equal to Gp, po&~! and Fow™! ]aD,If
respectively. Let 6o denote a hyperbolic structure on S as in §5.2.3. :

For any interval I C aI), we denote by |/| its arclength. When |I| <, the hyper-"
bolic distance d between 0 € 2 and a geodesic connecting endpoints of [ satisfies (cf.
[Bus92))

coshd = 1/sin(|1]/2).
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Phis equality induces that
d - logll +log2 5.4)

winve ¢! > coshd = 1/sin(|1|/2) > 2/|1|. Let [x,y] denote a shortest interval between
v ol

Our main theorem follows from the following proposition.

Proposition 5.5. There exist positive constants A, B, and 8, such that

“gQLﬂO

o vy ¢ 9D with |ix,y]| < 8;, where A, B, and &, are dependent only on €y and g(S).

-B

de(F(x),F(y)) <A (5.5)

Remark 5.6 (Reduction : The final stage). By a similar argument to that in §5.2.3,
wi can get rid of the assumption |x —y| < &, from Proposition 5.5 with an appropriate
sonstant A. Indeed, without loss of generality, we may assume that 8, < 2, because the
dinmeter of D is equal to 2. Since |x—y| < |[x,y]| < ®t|x —y|/2, by (5.5), the function
{3.) is at most

log3 —log|x -y

A sup (————
0<|lxy]/<5; \logT—log|[x,y]|

B
) —: A4(€0,5(S)) < oo

(1 |]v.y]' < §,. Otherwise, we have
do(F(x),F () log (3/]x— y})|? < diam,(C) x [log (6/785)|* =: As(e0, 8(S))-
I'hus, we establish
de(F(x),F (y)) llog (3/x = y)I” < max{As,As} (5.6)
lor all x,y € dD.

5.3.1. A lemma from hyperbolic geometry

| ¢t B be a proper path in I with distinct endpoints in 0D and /() a shortest interval
in dD connecting the endpoints of B.

l.emma 5.7. For any 8 € (0,7t/2), there is a constant Cy = C1(0) > O with the fol-
lowing property: Let z € dD and | a geodesic ray from 0 to z. Let B be a complete
neodesic in D, If B intersects | with angle at least 0, I(B) contains an interval J with
ventre z and |J| > Ci|I(B)).

P’roof. Let J be the maximal subinterval of /{B) with centre z and let B; denote a
complete geodesic with the endpoints of J. Let d (resp. d;) be the distance between 0
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and B (resp. B,). Then, our assertion derives from a geometric observation that d — d
is at most the length of cosh™ ! (1/sin0) (cf. Theorem 2.2.2 of [Bus92]).

5.3.2. Geometries on surfaces

Let y be a simple closed curve on (S,0p) and ¥ a lift of y. We denote by I(Y) the sef
of intervals /() for all such lifts of Y. For a system {Y;}; of simple closed curves on $
we define I({y;};) = U I(%).

Proposition 5.8. There exist constants 83, Cy, o1, N, £1 > 0 and a system {Y;}; '_‘
simple closed curves on (5.0¢) such that
(1) the |@g|-lengths of all y; are at most £),
(2) I({v:}:) covers oD, and

(3) for any interval J with |J| < 83, there exist at most N intervals {I,}m in 1({V: }:)}
which cover J and |L,| < C:J|* for all m,

where all constants above are dependent only on g(S) and €.

Proof. Consider a system of simple closed curves {Y}}; on S as Figure 1 (cf. Section?
3 of [Ser86]). We note that by Lemma 3.3 in [Min94], the identity mapping on S is a]
liftable quasi-isometry between (S, |®p|) and (S,0p). Therefore, by the compactness
of thick surfaces in the moduli space of S, there are positive constants €, ¢; and 0, A
depending on g(S) and &, a point p; € P, and a diffeomorphism ¢ on S such that

P contains an €;-disc with centre pp,

» the hyperbolic geodesic representative y; of @(Y,) has [®p|-length at most ¢y,
and
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+ the angle between ¥, and 7y, at 1y, is at least 0.

Lot P =8 — Uy Notice that the union of all lifts of P forms an equivariant tes-
w Ilation under the action of G. Let Py denote the lift of P whose closure contains 0.
Since Mobius transformations acting on D are Lipschitz on 0D, we may suppose that
fm 1s under 0 € D, Since the diameter of Py depends only on g(S) and £, the Lipschitz
vonstant depends only on g(S) and &.

l'or a tile Q of the tessellation, we set
0 :=U{g(R) : g € Ho with g(Ro) N Q # 0}.

| ¢t e be an edge of O and denote by Y(e) the lift of a curve {y;}; with e C ¥(¢). By the
«ompactness of the sct of geodesic rays intersecting Py, there are £3,¢3,08, > 0 such
that for any geodesic [ with INPy #0, the length of I?O N1 is in the interval [¢3,43],
wnd the angle at 9Py N1 between I and ¥(e) is in [8,,7/2 — 6,], where e is an edge of
oy withenl C 9By NI Using the compactness of thick surfaces in the moduli space
apain, one can check that the constants #5, 3,8, are dependent only on g(S) and €.

let z € dD and ! a geodesic ray connecting 0 and z. Then, it follows from the
wipument above that there exist a sequence {P, }, of tiles, an edge e, of P, intersecting
[ such that
néy < dp(0,Y(en)) < nis,

wiere ¢4 and 45 are dependent only on ¢, and /3 (and hence, on g(S) and &). Since
0. =0,(g(S),€0), e, satisfies z € I(Y(e,)) and

D" < [I(¥(ea))| < D37, (5.7

where D; = Di(g(S),€0) > 1 (i = 1,2).

Take Cy as Lemma 5.7 for 8. Let J be an interval in 9D with |J| < 83 := D;’}
and take n € N with D} ") < |J] < D™, Divide J into (at most) N = N(Dy,Ci)
components {J, }, such that each J,, has the length at most DI_("H) /C1. By Lemma
5.7 and (5.7), any Jy, is included in an interval I, := I(f,,) with D7) < |1, <
I)z'(’” ") Thus, at most N intervals {Im}m cover J and |I| < C2|J|* for all m with
w =logDy/logD;. O

5.3.3. Proof of Proposition 5.5

l.et us prove Proposition 5.5. From §5.2.2, we suppose that the convex core of Ny =
/T contains the projection of O = (0,0, 1) € H>. In this case, the CT-map F for p
is the restriction of the model map for Nt to ® (cf. §4.3). Take {V:};, 83, C2, o) and N
as in Proposition 5.8. We may assume 83 < (1/C;)!/®1,
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Let x,y € dD with |[x,y|| < 83. By Proposition 5.8, there are (at most) N mtervdg
{I}r with |I| < Gllx,y]|* and [x,y] C Uply. By (5.4), the hyperbolic geodesic ﬂk
with the endpoints of I; satisfies

dp(0,Bk) > —log|l| +log2 > - o log|[x,y]| ~1logCy +log?2. G li

Let ¥ denote a ]CI)ol geodesic sharing endpoints with B;. By Lemma 3.3 of [M1n9@
and (5.8), there exist positive constants C3 and Cy4 such that

d(0,%) > C3 log(/|[x,y]]) — Cs.

Therefore, by Lemma 4.3, we deduce

N
do(F (x),F(y)) < diam, (F ([x,y]) < Y diam, (F (;))
k=1

n -1/4K
<NG (Cg, log —— — C4)
il vl

1Jak - | —1/4K
=NGC, (og—-——C" C4)
eyl 2

whenever C3log(nt/|[x,y]) —Cs > Ry. Thus, we conclude

e TR T i e e N

—1/4K

de(F (x),F(y)) < Cs |log

ol

for all x,y € D with |[x,]| < & :=me~(R11C)/Cs where Cs > 0 is dependent only3
on & and g(S).

6. Families of Cannon-Thurston maps

In this section, we treat the behaviour of the limit sets when representations vary.

6.1. Continuity of Cannon-Thurston maps

This section gives a proof of Corollary 1.3 in §1.2.1. To this end, we first note (without |
proof) the following proposition which immediately follows from the combination of
Theorem 1.1 and Proposition 3.3 (see also (1.1)).

Proposition 6.1. Ler {p,} ., be a sequence of discrete faithful representations of G
which converges to a representation of G. Suppose that there is a constant €y > O such
that L(pa(G)) > go for n € N. Then, the family {F,}_, of CT-maps for {pn};; is
equicontinuous.
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Proof of Corollary 1.3. By Proposition 6.1 and the Ascoli’s theorem, {F,}_, con-
lins a subsequence which converges to a continuous map F uniformly. Since p,(g) o
l, HFogforallg € Gandp, = P, Po(g)oF = F og for all g € G. This implies
thut I is the CT-map for p... Therefore, the limit of any convergent subsequence of
{1,},; | is equal to F by (1) of Lemma 2.1. This means that the original sequence
vonverges to the CT-map for p.. uniformly. 1

6.2. Motion of limit sets on the representation space

I ¢1 (; be a Fuchsian 2-orbifold group. Denote by AH(G) the set of equivalence classes
ol discrete faithful representations from G to PSL(C). The equivalence relation is
detined by conjugations in PSL, (C). We topologise AH(G) by the algebraic topology.
lor € > 0, let AHg(G) be the set of [p] € AH(G) with L(p(G)) > &.

Theorem 6.2. There is a continuous map
. : AHe(G) x Ag — C
wich that for [p] € AHe(G), Fe([p], - ) is the CT-map for some p € [p].

I'oof. Fix non-commutative elements g,,g> € G. We choose a representative p of
Ipl € AHg(G) such that the attracting fixed points of p{g;) are 0 and 1, respectively
and the repelling fixed point of p(g;) is . Then one can check that when [p,] — [Pe]
i AHg(G), the representatives {p,},., converge to p., algebraically.

Let Fjp| denote the CT-map for the representative p. Then
Fi : AH¢(G) x Ag > ([p].x) — Fig(x) € C

is continuous by Corollary 1.3. i

0.3. Iterations under pseudo-Anosov actions

Suppose that G is isomorphic to 7 (S). Let X,Y be points in the Teichmiiller space
‘Teich(S) of S. In this section, we adopt the model of the Teichmiiller space such
that any point is represented by a pair (Xp, fo), where X; is a hyperbolic surface and
Jo: S — Xp is an orientation preserving homeomorphism (sce [IT92]). Denote by
p:xy) : G = PSLy(C) a quasifuchsian representation which uniformise X and ¥ (cf.
| Ber60)). Let @, be a Teichmiiller modular transformation acting on Teich(S) induced
by a psendo-Anosov homeomorphism ¢ on S. Namely, when X = (Xp, fo), we set
9.(X) = (Xo,f0097'). Let X, : = ¢(X) and ¥,, : = @/ (¥). Thurston showed that a sc-
quence {[p(x,.v_,)] }.., converges to [p..] € AH(G) which represents the Z-cover of
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the mapping torus with monodromy @ (cf. [Thu87}, see also [McMY6j and lMinOl]i
Let p, denote a representative of [y, y_,)] which converges to some p.. € [pe].

Theorem 6.3. The CT-map for p, converges uniformly to that for pe. )

En

Proof. By Corollary 1.3, it suffices to show the cxistence of a positive constant aq
satisfying L£(pn(G)) > €o for all n > 0. Let Py (resp. Py) be a pants decomposition off
§ such that the length of any component of Py on X (resp. Py on Y) is less than the

Wt
0

Bers’ constant (cf. [Bus92]), which is a constant depending only on g(5). ®

3

Before proving the theorem, we claim the existence of a positive constant Ky sal;g
isfying that

dz (nz(@"(Px)),7z(9™"(Pr))) < Ko (. 12

T

for all subsurface Z of § and n > 0, where dz is the distance on the arc compleqz
A(Z) for Z and 1tz - G L(S) — A(Z) is the projection from the set GL(S) of geodem,
laminations (with fixing a hyperbolic structure on S) for S to A(Z) (for the deﬁnitions,;d_
see [Min01]). Indeed, let A, be the support of the stable lamination of @ and Z, .
¢"(Z). Then 3
dz (z(¢" (Px)), 7z(@ " (Pr))) < dz (mz(9"(Px)),7z(Ms)))
+dz (nz(As),mz(¢7" (y)))
=dz_, (nz_,(Px),mz_, (97" (A+)))
+dz, (n2,(97"(A+)), 7z, (Py))
=dz_, (nz_,(Px),mz_,(A 1))
+dgz, (®z, (At ), 70z, (Py)) -

The last term is dominated by a constant independent of n and Z, because the hyper-._z
bolic manifold with one geometrically infinite end whose ending lamination is A, has !
bounded geometry (e.g. an example in p.121 of [Min00]). Therefore, (6.1) holds.

We now return to the proof of Theorem 6.3. Suppose to the contrary that there |
is a sequence {Y;}7_; of simple closed curves on § with £(p.;(Y;)) — 0 as j — co. ',
Since external short curves in the sense of Minsky for p, are in ¢"(Px) U @~"(Py),
from (6.1) and Minsky’s Bounded geometry theorem, if yis a closed curve on § with
Y& ¢"(Px) U@ "(Py), the translation length £(p,(Y)) of p,(Y) is bounded below by
a constant depending only on Ky and g(S) (see p.144 and p.150 of [Min01]). Thus,
without loss of generality, we may assume 7y; = @™ (y) for some y € Py.

By [Ber83], after taking subsequence if necessary, we deduce that [p(X,Y-znj)] con-
verges to a singly degenerate group [N.] € AH(G) (see also the discussion after this
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ool On the other hand, since

P x.v-2) (V) = £pny (9 (1)) - £(pn;(7;)) = O

w1, o0, Ne(G) has to contain a parabolic element, which contradicts that 1. is
sinply degenerate. [

('. McMullen proved that a sequence {[p(x y,)| }» converges to [N.| € AH(G) and
the 1mage MN(G) is a singly degenerate group whose end invariants consist of X and
the support of the stable lamination of @ (cf. [McM96]). We choose a representative
W' |Px.y,)] for each n > 1 such that 1, converges to M. In a similar way to the
pmool of Theorem 6.3, we also conclude the following.

Iheorem 6.4. The CT-map for M, converges uniformly to that for Ne.

7. Approximations to Peano curves

In this section we treat an approximation of a group-equivariant Peano curve or den-
e by a spherical polygonal curve, which is stated in Corollary 1.4.

l.et F be the CT-map for a representation of a Kleinian 2-orbifold group with
honnded geometry. Take a partition x = {x¢}7Z5 (tra1 = X0) of oD and let F(-;x)
lenote the spherical polygonal curve defined as §1.2.2 for x. Set 2 := max [xg4+1 —
\+|. Then, by Theorem 1.1,

diam, (F ([xe, xk+1])) < Allog D[~ (k=0,---,n).
I'hus, we obtain
do(F(x;x), F(x)) < de(F(x;%), F(xg)) +de (F (x), F(x)) < 2A|log D|78

lor x € [xg,x¢41] and k =0,--- ,n.

8. Generalised Hausdorff measures

Belore showing Corollary 1.5 in §1.2.3, we recall the definition and basic properties
ol generalised Hausdorff measures on a metric space (see e.g. §4.9 of [Mat95]).

Let ¥ be an increasing function on [0, ) with ¥(0) = 0. For € > 0, we set

Hye(E) = {151{ {Z‘P(diam(Ui)) :diam(U;) <e, EC U,-U,'}
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where {U;}; runs over all the possible coverings of E by sets ol diameter less than’
As € decreases, Hy ¢(E) increases and we define the gencralised Hausdorff measuﬁ
Hyp(E) with the gauge function ¥ of E by

PRy

Hy(E) = lim Hy,e(E) = sup Hy ¢(E).

e>0

S

":_.‘.42-;». AL -

When ¥(r) = t%, we call Ho(E) the a-dimensional Hausdorff measure and deno

it by Ho(E) for simplicity. It is known that there is a unique constant dim(E) > @
called the Hausdorff dimension of E, such that Hjiw(g)(E) = oo for o0 < dim(E) an§
Him(e)(E) = 0 for a0 > dim(E).

Proposition 8.1. Let F : (X,dx) — (Y,dy) be a continuous map between met
spaces and ¥(t) = modr(t). Then Hy(F(E)) < Hpa(E) for E C X. i

Proof. Fix &,&' > 0 and take €” > 0 such that ¥(e”) < &. Let {U;}; be a covering of
such that diamy (U;) < €” and Hya g (E) > ¥; ¥(diamy (U;))* — €. Then {F(U;)}:
a covering of F(E) of diameter less than € and

Hio g (F(E)) gZdiamY 2 (diamy (U;))*
S}Epa’E//(E)—i-E _ﬂ'ﬁyu(E)-i—ﬁ’.

Letting £, — 0, we have the assertion.

The following corollary follows immediately from Proposition 8.1.
Corollary 8.2. Let F: (X,dx) — (Y,dy) be a continuous map between metric spacex
and \W(t) -mody(t). Then the following statements hold for E C X.

(1) If dim(F (E)) > 0, then Hyo(E) = oo for all 0 < dim{E).
(2) Let Wy be an increasing continuous function of [0,c0) with ¥o(0) = 0 such thai
¥(1)* =0(Yo(t)) ast - >0 for all o > 0. If Hy,(E) =0, then dim(F(E)) = 0;

We finish this paper with the proof of Corollary 1.5 as follows.

Proof of Corollary 1.5. (1) This follows from Corollary 1.2 and (1) of Corollary 8.2.

(2) Since |log?|™® = O(]log|logt|| ') as t — 0 for all b > 0, by (2) of Corollary'
8.2, we conclude the assertion. Wk

|
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Variations of McShane’s identity
for punctured surface groups
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Dedicated to Professor Yukio Matsumoto on the occasion of his sixtieth birthday

Abstract

Let M be an orientable complete hyperbolic 3-manifold of finite volume which
fibers over the circle, with the fiber a punctured surface. Then each cusp torus of
M has a Euclidean structure. We give a formula which expresses the modulus of
the Euclidean torus in terms of the complex translation lengths of essential simple
loops on the fiber. This generalizes Bowditch’s formula on once-punctured torus
bundles, which was obtained as a variation of McShane’s identity. We also present
a formula on the “width” of the limit set of a quasifuchsian punctured surface
group. This generalizes the formula for quasifuchsian punctured torus groups,
which had been obtained by the authors.

{. Introduction

in [McS91], G. McShane described the following remarkable identity concerning the
lengths of simple closed geodesics on a once-punctured torus T with a complete hy-
perbolic structure of finite area (see also [Bow96]):

1 1
Yg 70 = 2 (1.1)
Ilere S denotes the set of all simple closed geodesics on T and /() denotes the length
ol a closed geodesic Y. McShane {McS98] generalized this identity to an identity for
an arbitrary orientable complete hyperbolic surface of finite type with at least one
puncture. (See also [McS04] for another variation of the identity for a hyperbolic
once-punctured torus.) Recently, M. Mirzakhani [MirO3b, Mir03a] has generalized
the identity for bordered hyperbolic surfaces and found beautiful applications of the
wlentity. She used it to obtain a recursive formula for the Weil-Petersson volume of
moduli spaces of such Riemann surfaces, and to obtain some counting estimates for
~imple closed geodesics on a surface. S. P. Tan informed us that he also has a variation
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1

On the other hand, B. Bowditch has found 3-dimensional variations of the 1dent1q
(1.1) for fuchsian punctured torus groups. In [Bow97], he proved that the same ldeﬁ
tity holds for quasifuchsian punctured torus groups, where the length is replaced wlﬂ
the complex length. He also described a formula which applies to hyperbolic oncé
punctured torus bundles in [Bow97]: namely, he proved a formula of the modulus d
the cusp torus of a hyperbolic once-punctured torus bundle. Motivated by this worl‘
the authors [AMS04] refined the identity in [Bow97] to a “width” formula of the lmﬁ
set of a geometrically finite punctured torus group. J

The purpose of this paper is to generalize the above 3-dimensional variations ﬂ
the identity (1.1) to arbitrary punctured surface groups. To be precise, we prove tlﬁ
following formulae.

(i) A formula which expresses the width of the limit set of a quasifuchsian pun
tured surface group in terms of the complex translation lengths of closed ge
desics (see Theorem 2.3). 3@

(i) A formula which expresses the modulus of the Euclidean torus of a hyperboli
punctured surface bundle in terms of the complex translation lengths of essenti
simple loops on the fiber (see Theorem 3.2).

This paper is organized as follows. In Sections 2 and 3, respectively, we presen
the explicit statements of the main Theorems 2.3 and 3.2. In order to state Theore;
3.2, we need a careful study of the dynamics of the action of a pseudo-Anosov home:
omorphism of a punctured surface on the circle at infinity (see Lemma 3.5) and a li ;
of complex translation length function (see Lemma 3.8). In Section 4, we recall Mcﬁ
Shane’s analysis of the simple complete geodesics in a hyperbolic punctured surface
emanating from a puncture, which gives the starting point of the proof of the
theorems (see Proposition 4.1). In Section 5, we prove the locally uniform convef{
gence of the infinite sum in Theorem 2.3 on the quasifuchsian space (see Propositiori
5.1). The observation due to Birman and Series [BS85] (cf. [Mir0O3a]) that the numj
ber of simple closed geodesics in a hyperbolic surface grows at most polynomially
with respect to the iengths holds the key 10 the proof of Proposition 5.1. In Section
we prove Theorem 2.3 by using McShane’s result and Proposition 5.1. In Section 7
we prove Theorem 3.2 by using McShane’s result and Proposition 7.6 concerning th
convergence of the infinite sum in Theorem 3.2, where the proof of Proposition 7.6 i
deferred to Section 8. A key ingredient of the proof of the proposition is the existenc
of a compact submanifold, in the infinite cyclic covering of the hyperbolic surface
bundle, which contains all geodesics contributing to the infinite sum (see Lemma 8.2):
Another key ingredient is Lemma 8.4, which follows from the observation that if aﬁi
loop in a hyperbolic manifold is far away from its geodesic representative, then the%
“geodesic curvature” of the loop at the point where the distance attains the maximum'
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*abonld be large (see Figure 5 and Lemma 9.1). ‘This idea was brought to us by Ken
tomberg. A rigorous proof to this obscervation is given in Section 9 by a differential
prometric calculation.

We would like to express our deepest thanks to Caroline Series for stimulating
vimversations and encouragements. Actually this work grew out from conversations
with her, while the authors were staying at the University of Warwick. We would
alwo like to thank Brian Bowditch, Ken Bromberg, Young-Eun Choi, Greg McShane,
Yair Minsky and Ser Peow Tan for their invaluable suggestions, conversations and
«omments. The last step of the proof was completed when the authors were attending
ihe Newton Institute Programme, The spaces of Kleinian groups and hyperbolic 3-
manifolds. 'We thank the Newton Institute and the University of Warwick for their
wonderful hospitality.

Notation. We summarize notations used in this paper.

« F =H/T: an orientable complete hyperbolic surface of finite area with a spec-
ificd puncture, p.

= m: the meridian around p.

* po: M (F) — PSL(2,R): the holonomy representation of F with po(7(F)) =

1 1
Foandpo(m)=<0 1

* QF (resp. ¥): the space of the equivalence classes of quasxfuchsnan (resp.
fuchsian) representations of m; (F).

« pi*: the bending laminations of p € Q¥ .

* Ap(a): alift to C of the complex translation length of p(a) (Definition 3.10, cf.
Lemma 3.8).

» width,(A): the width of limit set A at the puncture p.

* S (tesp. P): the set of isotopy classes of essential (resp. peripheral) simplc
loops in F'.

* A (resp. K): the sct of the isotopy classes of unoriented (resp. oriented) essential
simple arcs in F with both ends in p.

« A, (resp. Ag): the left (resp. right) half of A with respect to pi~ .

« For 8 € A (or & € A), a(3) and B(8) denote the unordered pair of simple loops
such that o(8) UB(8) bounds a punctured annulus containing 8.
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. ForSEA(orSEZ),

1
14 3 Oo(al®) 14 (B(3)))

hp(8) =

* F: the blow-up of F at the punctures. ‘
¢ d,F: the boundary component of J corresponding to p.

* ¢: F — F: a pseudo-Anosov homeomorphism which preserves the puncture p’,

* By: the F-bundle over S' with monodromy ¢.

dpBy: the cusp torus of By, around the suspension of p.

I: the longitude of d,B¢ (Definition 3.4).

LV DU (U PR~ P

Aq,: a subset of A associated with ¢ (Definition 3.6, cf. Remark 3.7).

T

A

The homeomorphism ¢ naturally defines the following commutative diagrams;;

F(—B——apF

A
F‘ <

PR SRERIY S 4

D

HUOH «—=— 9H — {o0} §) «—>— G —— A s
l@ l‘f’:@p l‘Pp l¢l7 l‘Pp J
HUH «—— JH — {e0} She 2 G2 & "'

2. Quasifuchsian groups and the widths of the limit sets

Quasifuchsian representations. Let F be an orientable complete hyperbolic sur—._;v
face of finite type with at least one puncture. Let pg : T {F) — PSL(2,R) be the ’
holonomy representation and Iy := po(7t; (F)) the holonomy group. A representation *
p: 7 (F) — PSL(2,C) is said to be type-preserving if p sends the peripheral elements ‘
to parabolic transformations and p is irreducible. Two representations p and p’ are s|
said to be equivalent if p’ is equal to the composition of p and an inner-automorphism -
of PSL(2,C). A type-preserving representation p is said to be fuchsian if it is equiva- ‘
lent to a discrete faithful representation into PSL(2,R). If p is fuchsian, the limit set
of the image of p is a round circle. A type-preserving representation p is said to be -
quasifuchsian if it is quasiconformally equivalent to a fuchsian representation. This -
is equivalent to the condition that p is discrete faithful and the limit set of the image
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ol p is homeomorphic to a circle. Let Q¥ (resp. F) be the space of the equivalence
isses of quasifuchsian (resp. fuchsian) representations of ) (F'). Then the complex
ahucture of PSL(2,C) descends to the complex structure on Q¥ , and ¥ is a totally
1eal analytic submanifold of Q¥ with dimg ¥ = dim¢ Q¥ . By Bers’ simultaneous
wniformization, the quasifuchsian space Q¥ is canonically identified with the product
spice Teich(F) x Teich(F) as complex manifold. In particular Q¥ is contractible.

l.et p be a puncture and m be a meridian around p, i.e., a peripheral simple loop
mound p. We choose a base point for ; (F) on the circle m and denote the clement of
1y (/") represented by m by the same symbol. Pick an element Yy € m) (F) represented
hy a non-peripheral loop. Then each element of QF has a unique representative p &
tHlom(my (F),PSL(2,C)) which satisfies the following conditions:

p(m)=<(1) i) Fix*p(y) =0, Fix"p(mym ')=1.

Here Fixt denotes the attractive fixed point of a loxodromic transformation. The
vurrespondence
Q,f}- El [p] —pE Hom(nl(F),PSL(Z,(C))

pives a holomorphic cross section of Q% . Throughout this paper, we identify the
spitce QF with its image by the holomorphic section.

Complex translation length. Recall that the complex translation length A(A) of a
Joxodromic element A € PSL(2,C) is defined to be the unique element of C/27iZ
~alisfying the following conditions:

(i} The real part ®(A(A)) > O is the translation length along the axis of A. Thus
R(A(A)) = min, g d(x,A(x)), where d is the hyperbolic metric.

(ii) The imaginary part 3(A(A)) is the rotation angle of A around the axis of A.

Il A is parabolic, then A(A) is defined to be 0 € C/2miZ. Then A(A) € C/2niZ is
characterized by

2cosh l—(‘;ﬁ ==#tr(4), R(AA))>0.

l.ct ot be an essential simple loop in F, i.e., a simple loop in F which does not bound a
disk nor a once-punctured disk in F. We abusc notation to denote an element of ) (F)
tepresented by o by the same symbol. Then, for any quasifuchsian representation p
of m(F), p(a) is a loxodromic transformation. The correspondence p — A(p(at))
dctermines a holomorphic function QF — C/27iZ. Since Q¥ is contractible, this
map lifts to a holomorphic function Q¥ — C which sends ¥ into R. We denote by
Ap(0t) the complex number obtained as the image of p € QF by the holomorphic
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pim) iz 7+ 1

Widthp(A)

Figure 1: The width width, (A) of limit set A at p.

fanction, and continue to call it the complex translation length of p(o) (cf. [(KS04,
Section 6.1]). If o is a peripheral simple loop, i.e., 0 bounds a once-punctured disk 1n
F, then we define Ap(ar) =0 € C. :

Width of the limit set. Let p be an element of Q7 , and let " be the quasifuchsian’
group obtained as the image of p. Then the quotient hyperbolic manifold M = M,, :=,
I3 /T is homeomorphic to F x (—1,1). Let Mg be the convex core of M, that is,
Mg = C/T where ( is the convex hull of the limit set A of " in H’. Then we defined’
the width of A at the puncture p of F as follows (sec [AMSO04, Section 1]). Since'l

p(m)= (1) » the intersection ANC is invariant by the translation z — z+ 1. Thus

1
we have the following non-negative real number:

width,(A) :=:m; (A) —m), (A),
where
mS(A) :=max{3z|z € ANC}, m, (A) :==min{3z|z € ANC}.

We call width,(A) the width of the limit set A at the puncture p. A coordinate free
definition of width,(A) is given as follows. Choose a cusp neighborhood C,, of the end
of M corresponding to the puncture p. Then A, := dC, N Mo is a Euclidean annulus,
and width,(A) is equal to the modulus of 4, that is,

(the distance between the components of 04 )
(the length of a component of dA )

width,(A) =

Bending laminations. Note that (except when I is fuchsian) the convex core bound-
ary dMy has two components, 3°My. Each of them has a structure of complete
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livperbolic surface homeomorphic 1o I bent along a measured geodesic lamination,
pt' o ML(FY, called the bending lamination (see [EM87, Chapter 1),

Punctured torus case. Suppose for a while that F is a once-punctured torus T'. Then
the projective measured lamination space PML(T) is identified with 1 = RU {}
and the set S of the isotopy classes of essential simple loops in T can be thought of
an the set of rational points in PML(T). So, the two projective measured laminations
[t | divide S! into two closed intervals and hence they divide S — {|pl~],[p{*]} into
two subsets, Sy and Sg. Then the following formula was proved in [AMS04].

‘Theorem 2.1. For any quasifuchsian punctured torus group T, the width widthp,(A)
of the limit set A is given by the following formula.

1 1
e il Vi s nOR

(X.ESR

twidth,(A)=3 )

OLCSL

Gicneral case. To describe our theorem which generalizes the above formula, we
need to introduce further notations. By § we denote the set of the isotopy classes of
essential (unoriented) simple loops in a punctured surface F. A simple arc § in F with
hoth ends in the puncture p is said to be essential if it does not bound a monogon (i.e.,
a disk with one point removed from its boundary). By A (resp. A) we denote the set of
the isotopy classes of unoriented (resp. oriented) essential simple arcs in F with both
¢nds in p. We shall abuse notation to denote a simple loop or an arc and its isotopy
class by the same symbol. For each essential arc & € A (or 8 € A) there is a unique
(up to isotopy) unordered pair of simple loops /() and B(8) such that o(3) U B(3)
hounds a punctured annulus containing 8 (cf. [McS98, Proposition 1]). These loops
determine a pair of elements of S U P, where P is the set of the isotopy classes of
peripheral simple loops in F. We note the following facts.

(i) If F is a punctured torus, then a(8) = B(8) C S. Otherwise, ot(d) # B(S).
(ii) One of a(3) and B(8) belongs to P if and only if 8 bounds a once-punctured
monogon.

loreachdc A(orde Z), set

1

ho(d) :- - ;
p(®) 1+ o3 () Ao (B(3)

Then the following theorem generalizes McShane’s identity [McS98, Theorem 2] for
fuchsian punctured surface groups and Bowditch’s generalization |[Bow97, Theorem
3] of (1.1) for quasifuchsian punctured torus groups.
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Theorem 2.2. For any p € QF, we have

Y A (8) =

deA

Let G be the set of the oriented complete simple geodesics in the hyperbolic sur-
face F = H?/Ty emanating from the puncture p. Then the set A is regarded as a
subset of G. Let G be the set of oricnted complete geodesics in H? emanating from
co which projects to a simple geodesic in F. Then ? is identified with a subset of
R = M2 -- {oo} by associating each element ji € § with its endpoint Zpo (1) ER. This.
induces an identification of G with a subset of the circle S ,', =R/{po(m)} =R/Z.

Letp € QF — ¥ be a quasifuchsian representation, and let |pl* | be the underlying
geodesic lamination of the bending laminations pI™ of p. Then | pI*| is disjoint from a’
neighborhood of p, and hence we can find, for each € = +, a complete simple geodesic;
& € G which is disjoint from |p/®|. Then we have u~ # ,u ,because p ¢ 7. Since A i is! i
identified with a subset of S, ! we obtain a partition of A — {y—,u*} into two subsets
A; and Ag. We shall prove the following gencralization of Theorem 2.1.

Theorem 2.3. Let p be a quasifuchsian representation of | (F) and T its image. Then !
the width of the limit set A of " at the puncture p is given by the following formula.

twidthy(A) =3 Y hp(8)=-3 ) hp(8).
86&1‘ SGZR

Remark 2.4. Since there are various choices of the pair {y~,u*}, the subsets A, and
A arc not uniquely determined by p. However, by using the fact that p(Yy) is purely-
hyperbolic for every essential simple loop y which lies in F - |pl™| or F -- |pl* | (cf.
[KS93, Lemma 4.6]), we can see that the imaginary parts of the infinite sums do not
depend on the choice of the subsets.

oo e Ml i S ey sl T P EREarrds Vot aFd LRI

Comparing Theorems 2.1 and 2.3. In the remainder of this section, we describe
the relationship between Theorems 2.1 and 2.3. Assume that the surface F is a once-
punctured torus T. Then we consider the map y : G — PML(T) defined as follows.
Let 1 be an element of G. Then there is a unique element v € PML(T) whose under- -
lying geodesic lamination is disjoint from . (In fact, if u € A, then |v{ is an essential
simple loop; if y ¢ A, then {v] is obtained from the closure of u in F by removing p.)
Then we define y(u) = v. Let T be the hyper-clliptic involution on 7. Then T induces
the half-rotation on S},, which preserves the subsets ¢ and A. We can eis1ly see that
the restriction of y to A induces a T-invariant two-to-one surjective map A -+ S.

o it e foitne it Mk T e e 2 o nd T

Let p be a quasifuchsian representation of @ (T) and 1€ be elements of G such that |
LN plf| =0 (e = &). Then y(*) = [plf] and the restriction WIZ satisfies one of the
L
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w9 W)

ut) s u*)
Figure 2: In each of the left and right circles, the bold circular arc corresponds to AL

lollowing conditions (see Figure 2):
(i) WIZ is a bijection from A, onto Sy or Sg.
L
(i) ' i is a surjection from A; onto S, and one of the following holds.
L

@ (y| i ) (o) consists of one or two elements according to whether o be-
L
longs to § — Sg.
(b) (v i )~!(x) consists of one or two elements according to whether o be-
L

longs to § — $1.

[n the first case, the infinite sum Zﬁez—i hp(8) is equal to
1,

1 1
— . or —— e
Z o (0] Z L el
0eSL 1+ M@ 0cSg 1+
In the second case, the infinite sum is equal to
1 1 1 1
Y et Le® ¢ L iset L e
aes, 1@ (o 14 e® aese 11 (14 eho@
Since Zoce.S :e—)lm = % by [Bow97, Theorem 3] (cf. Theorem 2.2), the imaginary

part of the infinite sum is equal (modulo sign) to the infinite sum in Theorem 2.1.

3. Hyperbelic punctured surface bundles

In this scction, we present a generalization of Bowditch’s result [Bow97] on hyper-
bolic once-punctured torus bundles. Let ¢ : F — F be a pseudo-Anosov homeomor-
phism preserving the puncture p, and let By be the F-bundle over S' with monodromy
¢. Then By admits a unique complete hyperbolic structure of finite volume, and
cach cusp torus carries a Euclidean structure. Let d,B, be the cusp torus around
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the suspension of p. A meridian m of 9,By is defined as the meridian around p of
a fiber. We shall specify a longitude | of 0,B¢ in Definition 3.4. Then the modulus
Modulus(d,Bg) of the cusp torus d,B,, with respect to the meridian-longitude pair
(m,1), is defined as follows: Let p : ®;(By) — PSL(2,C) be the holonomy representa-
tion of the hyperbolic manifold B, such that p(m) is the parallel translation z -+ z+ 1,
Then p(!) is the parallel translation z — z + Modulus(d,By).

To recall Bowditch’s theorem, suppose for a while that F is a once-punctured torus
T. Then the monodromy ¢ induces a self-homeomorphism of the projective measured
lamination space PML(T) =2 S' preserving the subset .§. This homeomorphism has
two fixed points in PML(T), namely the stable and unstable laminations, v* and v,
of the monodromy. Since v* and v~ are irrational, they determine a natural partition '
of § into two subsets Sy, and Sg. This in turn gives a partition of the quotient set .S /(@) :
(which is identified with the set of essential simple loops on a fiber /' modulo isotopy ;
in the ambient 3-manifold By) into two subsets S;./(®) and Sg/ (). For two elements ¢
o and o/ of S representing the same element in S /(9), the complex translation lengths
of p(a) and p(a’) coincide. So, the complex translation length Ap(a) € C/2mZ 1s
well-defined for o € S/(p). It should be noted that e*(®) is a well-defined complex |
number. Then the following theorem was proved by Bowditch [Bow97]. ;

Theorem 3.1. Let By, be a complete hyperbolic 3-manifold which fibers over the i
circle with fiber a once-punctured torus T with monodromy ©. Then the modulus 3
Modulus(d,By) of the cusp torus ,Bg, with respect to a suitable choice of a longi- .
tude 1, is given by the following formula. !

1 1
+Modulus(9,B) = Y, —m=— Y, —
(@) (o)
acS. /(o) L14e acSq/ (o) 1+e

In the general punctured surface bundle case, we study the action of the mon-
odromy ¢ on the sets G and A, and specify a certain subset, Ag, of A in Definition

3.6 (cf. Remark 3.7). Then our generalization of Bowditch’s result can be stated as
follows.

PR SR

Theorem 3.2. Let B, be a complete hyperbolic 3-manifold which fibers over the circle
with fiber F with monodromy @ that preserves the puncture p. Then the modulus
Modulus(d,Bg) of the cusp torus d,By, with respect to a suitable choice of a longitude
1, is given by the following formula.

oot Rt e i el S i sm

Modulus(9,B,) =+ )" hy(3).

-

SeA,
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In the above theorem, /1,(8) is detined by

1

hy(8) := .
e (0) 1+ 3 (o (@®)+Ap(B(3))’

where A (o) with o € S U P denotes a lift to C of the complex translation length of
pw) specified by Definition 3.10 below. In the remainder of this section, we give
eaplicit definitions of the longitude /, the subset Zq, C A and the complex translation
length Ap(ar) € C.

Behavior of @ on the boundary. Since @ is a pseudo-Anosov homeomorphism,
ihere are measured foliations 1 and F ™ satisfying the following conditions (cf. e.g.
| Kap0l1, Section 11.4]).

(i) F* and F~ are transversal, that is, their singular scis are equal, and F * s
transversal to F ~ away from the singular set.

(i) 9(F1) =kF*+ and ¢(F~) =k~ F~ for some k > 1. Namely, ¢ preserves
the singular foliations #+ and ¥ ~, and multiplies the measures by k and k!
respectively.

I'or each puncture g of F, there is a neighborhood of g that is identified with a neigh-
borhood of 0 of 2 complex plane, such that the F™ and F  are given by |3(z%/2dz)|
and |R(z%/%dz)|, respectively, for some integer d > —1 (cf. e.g. [Gar87, Section 11.1],
|KapO1, Section 11.3]). In particular, each of F* and #~ has d +2 (> 1) singular
lcaves landing at the puncture . The number d + 2 is called the degree of < at q.

Let F be the compact surface with boundary obtained by adding the circle of rays
lrom g for each puncture g. We denote this boundary circle by d,F. Then the measured
luliations F * extend to measured foliations j"i of F. Each of i’i has b (> 1) singular
lcaves landing in d,F, where b is the degree of F * at g. Moreover ¢ extends to a
homeomorphism of F, which we continue to denote by ¢.

Since ¢ preserves the puncture p, ¢ : F — F induces a homeomorphism of the
boundary circle d,F. Let b be the degree of F * at the puncture p, and let {xit,xit, ‘e ,xf
he the endpoints of the singular leaves of F * in d,F. We assume that they are
arranged on d,F in this cyclic order. Since ¢ preserves the singular leaves, there
is a unique integer ¢ with 0 < ¢ < b such that @ acts on the scts {xli,xit, - ,xfj} as the
shift of indices by c. Set ng = b/ ged(b,c). Since @ is affine with respect to the sin-
gular Euclidean metric determined by the mutually transversal measured laminations
% and F~, we have the following lemma.

Lemma 3.3. The sets {x| .xf,--- x}} and {x] x5 ,-- ,x, }, respectively, are equal
fo the attractive and the repulsive fixed point sets of ¢ : 0,F — 9,F, and they are
arranged on 9, F alternately.
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Specifying the longitude. Let By = F X [0,1)/(x,0) ~ (@(x), 1) be the F-bundle
over S! with monodromy ¢, and let d,B be the boundary component of By corre-
sponding to the puncture p of F. Namely, 0,8y = 9,F x [0,1]/(x,0) ~ (@(x),1)..
Then By is identified with the interior of By, and the cusp torus d,,By is identified with
d,Bo. -
Definition 3.4. By the longitude | of d,B,, we mean the isotopy class of the simple-
loop in d,B, obtained as the image of U:f"zal(pf (x) x [0,1], where ng is the natural:
number in Lemma 3.3 and x is a fixed point of ¢"0,

Note that the meridian-longitude pair (m,!) defined in the above forms a basis of
H;(3,By;Z) if and only if np = 1. However, it always forms a basis of H;(d,B,;Q)'
and hence the modulus of d,B, with respect to any basis of H(d,Bg:Z) can be cal-!
culated from Modulus(d,By). To be precise, let Iy be an element of H;(9,By;Z) such
that (m,lo) is a basis of H(d,By;Z). Then we see | = nglp +nym for some integer n;, ]
and the modulus Modulusy(9,By) of d,B, with respect to this basis is given by

Modulusg(0,Bg) = 1

" (Modulus(d,B,) — 1) .

In particular, the imaginary part is given by

3 (Modulusg(d,By)) = nlos (Modulus(3,By)) -

We also note that / can be regarded as the longitude of the cusp torus, correspond-
ing to the puncture p, of the F-bundle By over S! with monodromy @™, which
is a Z/noZ-covering of By. Moreover (m,l) is a basis of the integral homology
H,(d,Bymw ) and we have

Modulus(d,Bg) = Modulus(d,Bym ).

The action of ¢ on A and G. We may assume @ is the Teichmiiller map and the
conformal structure on F = HZ2 /Ty is absolutely @-minimal in the sense of Bers, that
is, it lies in the invariant axis of the action of ¢ on the Teichmiiller space (see e.g.
[IT92, Section 5.2]). Then @ : F — F is quasiconformal, and hence its lift to H?
extends to a homeomorphism of H2? UJH?. Let § be such a homeomorphism of H? U
dH? which stabilizes « = Fix(po(m)). We denote by ¢, the homeomorphism of S}, =
R/(po(m)) induced by the restriction of § to R = 9H? — {eo}.

For each 1 € ?, consider the geodesic in H? emanating from oo and ending at
®(zp (1)), the image by @ of the endpoint z,,(11) of 1. Then it also belongs to G.
This determines a bijection G — G, which in turn induces a bijection G — G. After
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ikeatitying ¢ with a subset of .S',',. the bijection is identificd with the restriction of
I\ .S'I', - SI', to G. The lollowing lemma describes the dynamics of @),.

Lemma 3.5. Let ng be as in Lemma 3.3. Then @ has finitely many attractive fixed
points and repulsive fixed points, which are arranged on S;, alternately. Moreover,
tor any component J of S}, (Fix* (@) UFix™(@p’)) bounded by an attractive fixed
point A* and a repulsive fixed point A=, ¢ maps every point X € J to a point strictly
closer to A*, and we have lim;(9,°)/ (X) = AT and limj(g}") /(X) =A".

I'roof. This lemma is an analogy of [CB88, Theorem 5.5] for pseudo-Anosov home-
omorphisms of closed surfaces, and the proof is almost parallel to that in [CB88].
tlowever, we could not find a reference which contains the proof in the punctured sur-
tace case. So, we include the proof for completeness. For simplicity, we prove the
l-mma by assuming ng = 1: the lemma for the general case can be proved similarly.

Let L be a singular leaf of #* emanating from p. Since @ preserves the singular
toliations F* and multiplies the measures by k*!, L does not contain a singular point
exeept p (cf. [Kap01, Lemma 11.42]). Thus every lift of L to H? has a well-defined
cndpoint on 9H? and the endpoint is distinct from the origin by [MS85, Theorem].
Pick a lift L of L to H? which emanates from co. Since ¢ preserves L (by the as-
sumption ng = 1), we can assume @ preserves L. Then ¢ fixes the endpoint of Lin
i = 0H? — {c0}, and hence Fix(§|r) # 0.

Now let v and v~, respectively, be the stable and unstable measured laminations
ol @, and let W be the component of F — [v¥| containing the puncture p. We denote
by W the metric completion of W* with the induced path metric. Then we see, by
an argument parallel to [CB88, Lemma 5.3], that Wisa “once-punctured finite sided
ideal polygon”; namely, T (Wi) is the infinite cyclic group generated by a peripheral
loop around p, and OW" is a finite union of infinite geodesics, which are joined cycli-
cally by ideal vertices (see Figure 3). In fact, if this is not the case then the boundary
of the Nielsen core of W gives a @-invariant family of mutually disjoint essential
loops of F: this contradicts the assumption that @ is pseudo-Anosov.

Let W be the component of the inverse image of W- in H? whose closure con-
(ains co. Then W is (the interior of) an infinite sided ideal polygon such that the
set, VE (C R), of the idcal vertices accumulates only at « (see Figure 3). Since
(W) = W* and §(e0) = oo, § preserves W= and hence V*. Hence every point of
V* must be fixed by §; otherwise, § acts on V* as a shift and hence §|g cannot have
a fixed point, a contradiction.

We follow the argument of [CB88, Proof of Theorem 5.5], and show that V+ and
V= are arranged alternately on R and that they are equal to the attractive and repulsive
lixed point sets of |z, respectively. To this end, let I be the closure of a component of
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Figure 3: Once-punctured finite sided ideal polygon W and the component W of its mverse
image in H? whose closure contains o, :

i

R—V*. Then I is a stable interval for v* in the sense of [CB88, p.81, Deﬁnilion], that :
is, for dny two points P and @ in the interior int/ of /, there is a leaf 8 of the i inverse :
image v of v* in H? whose endpoints separate P and Q from dI. This can be seen
as follows as in [CB88, Lemma 5.4]. Since the leaf 81, of v with endpomts aI is not
isolated, there is a sequence {8 } of leaves of V1 Wthh tends to 8. Since V' has no
closed leaves, there are only finitely many leaves of v ¥ whose endpoints contain one
of the points of o/ (cf. [CB88, Lemma 4.5]). So we may assume that the endpoints of a
8 are contained in int/. This shows that / is a stable interval of v '. §

Pick a simple closed geodesic y in F. Then ¢/(y) converges to vt in PML(F),
and hence [v*] is contained in the limit lim@/(y) in the Chabauty topology. Since !
[v*| fills up F and since the image §; of 5 in [v*| is dense in [v*!, vy intersects §; :'
transversely. Thercfore, some lift ¥ in H?> has endpoints A € int/ and B € oH? —I.
Since § preserves I (resp. oH? —intl), $/(A) (resp. §/(B)) converges to a point '
A €I (resp. B.. € oH? —inU/). We show that A.. € dI. Suppose to the contrary
that A, € int/. Then there is a leaf & of Vv~ whose endpoints separate Ao from dl,
because I is a stable interval for vt. The geodesic 8.. with endpoints A.. and B
projects to a leaf of lim¢’(y), and it intersccts 3 transversely. This contradicts the fact
lvt| C lim¢/(y). Hence A. € 9! and thercfore A.. is an attractive fixed point of §!;.

Let U be the open subinterval of I with endpoints A and A... Then ¢ moves all
points of U strictly closer to A... Let V be a neighborhood of 0] — {A.} in 1 such that
V and ¢(V) are disjoint from U. Since I is a stable interval, there is a leaf 5of V' with
endpoints X € U and ¥ € V. It follows that $(X) and §(Y) separate X and Y from
ol. Let X.. and .., respectively, be the limits of the sequences ¢ ~/(X) and ¢ /().
Suppose that X.., # Y... Then the closure I’ of the component of 9F? — {X.,, Y..} that is
not contained in I is a ¢-invariant stable interval, and both endpoints of ' are repulsive
fixed points of ¢|y. However, the previous argument shows that one of the endpoints
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of I is an attractive fixed point of @y, a contradiction. Hence Xo = Y. This implies
that X... -= Yo, is the unigue (repulsive) fixed point of ¢ contained in int/, and both points
 dl are attractive fixed points of @|;. Hence, the attractive fixed point set of Q|g is
vyual o V* and each component of R — V+ contains a unique repulsive fixed point
ol ¢|k. By applying the same argument to ¢~ L, we see that V* and V™ are equal to
1he attractive and repulsive fixed point sets of @|R, respectively, and they are arranged
alternately on R. By taking the quotient by {po{m)), we obtain the first assertion of
I emma 3.5. The second assertion obviously follows from the first assertion. 0

Now the subset Z<P of A in Theorem 3.2 is defined as follows.

Definition 3.6. Let 7o be the natural number in Lemma 3.5. Pick a connected com-
ponent, J, of S} — Fix(¢’) and an element u € J (G — A), and let [y, 90 (u)] be the
closed sub-interval of J bounded by u and @ (u). Then we define Ag := [u, @5 ()] N
A

Remark 3.7, (1) There is a one-to-one correspondence between Zq, and the quotient
st (JNAY/(@}), which in turn is a subset of A/(@}°). Moreover k(@ (8)) = ho(5)
lor every 8 € A, Thus we may identify A with the subset (JNA)/ (@) of A/ (9p0).
So the choice of u in the definition of Kq, is not essential.

(2) Throughout the remainder of this section and Section 7, we assume that g and
¢, (1) lie in this order with respect to the orientation of J induced by that of R.

Complex translation length in the fiber group. Let p be the holonomy representa-
tion of the fiber group ; (F) in the hyperbolic manifold By, Pick a point 6 € Teich(F),
and let p,, be the element of QF uniformizing (¢, ”(c),¢?(o)) for each natural num-
ber n. Here . denotes the automorphism of Teich(F) induced by ¢. Then p, con-
verges to p strongly, because we know from the proof of Theorem 0.1 in [Thu87] (see
[Thu87, §5]) that any subsequence of {p,} contains a subsequence converging to p
strongly.

l.emma 3.8. In the above situation, the sequence of the complex translation lengths
Ao, () in C converges for each 0. C S. Moreover the limit lim Ay, (t) does not depend
on the choice of ©.

Proof. We prepare some notations. Let dy be the Teichmiiller distance on Teich(F),
and let dpr be the metric on Q¥ =¢ Teich(F) x Teich(F) defined by

dQF((Gv T)v (ojurl)) = max{dT(GeoJ):dT(T’r’)}'

Denote the automorphism of Q¥ , induced by the automorphism (6,7) — (95 (c), 9. (1)
on Teich(F) x Teich(F'), by the same symbol @.. Then it preserves the metric dgr.
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Now pick a point 6 € Teich(T). Choose a path 6y : [0,1] - Teich(/) connect
ing ¢ and ¢.(0), and extend it to a path o(t) (2 € (—oo,00)) in Teich(F) by setting -
o(1) = ¢7(co(t —n)) when 0 <1 —n < | for n € Z. Then it satisfies the condition

@ (o(r)) = o(t +n); in particular o(n) = @}(c). Let p, be the element of QF C

Hom(n, (F),PSL(2,C)) uniformizing (6(—t),6(t)). Then we have ¢*(p;) = p;—n by

the definition of ¢, : QF — QF.

Claim 3.9. The path [0,0) 5t — p, € Hom(n; (F),PSL(2.C)) extends to a continu-
ous path from the closed interval [0,0] by putting p.. to be the holonomy representa- .

tion p of the fiber group in the hyperbolic manifold B,

Proof. Let {t,} be a sequence in [0,%0) such that #, — o. Take m, € N with 0 <
tp —my < 1. Then p,,, and p,, arc conjugate by a quasiconformal mapping f, whose .
maximal dilatation is bounded above by a constant dy := max{dgr(po,p:) |t € [0,1]}, :

which is independent of #, because

dor (Pmy,Pr,) = dor (97" (P0), 02" (Pra—m,)) = dgr (PO, Pty- my) < do-

By the choice of the holomorphic section QF — Hom(m; (F),PSL(2,C)) (see Section
2), fn is normalized, that is f,, fixes {0,1,c0} pointwise. Applying the compactness of
normalized e%-quasiconformal mappings (cf. e.g. |1T92, Theorem 4.17]), we deduce

]

that f, converges to an e%-quasiconformal mapping f.. (by taking a subsequence, if
necessary). Thus, p;, (Y) = fn 0 Pm,(Y) 0 f,”' converges to fop(y)ofs! forallye

) (F). Since the limit set of p(m; (F)) is the whole C, we conclude by the Sullivan’s
rigidity theorem (cf. e.g. [MT98, Theorem 5.20]) that f.. is conformal on the whole

€. This implies that f., coincides with the identity mapping on € because of the

normalization. Hence p;, converges to p.

It follows from the argument above that the path # +— p, lands at p. Hence the path
extends to a continuous path from [0, =] by putting p.. = p. |

Fix o € S. Since p; € QF fort € [0,c0), we have a continuous map [0,c0) 5 ¢ —
Ao, (o) € C (see Section 2). The composition of this map with the projection C —
C/2miZ extends to a continuous map from the closed interval [0,c], because every
loxodromic transformation has a well-defined complex translation length in C/2mwiZ.
Since C — C/2miZ is a covering projection, we obtain a continuous extension of the
map Ay, (@) to a map from the closed interval [0,00] to C. Hence lim A, (o) = Ao, (ar) €
C exists.

Finally, we show that limA,, () does not depend on the choice of . Pick another
point ¢’ € Teich(F), and consider the path o’(z) (¢ € (—eo,0)) in Teich(F) as above.
Let p; be the element of QF uniformizing (6'(—t),0'(t)). Since QF is contractible,
there is a continuous map D : [0, 1]> — Q¥ such that D(¢,0) = p,, D(t,1) = p!, and
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o DIOLs) = DCLs) forr,s o |0, 1], The map D is extended 10 a continuous map on
- 101 by pudting D(r.8)  @"oD(r n.s), where n is the integer with0 <t —n < 1.
I'he relation @7 o D(t,s) = D(t n.s) implies that for (t,s) € [0,1]2, D(¢,s) and p; are
runjugate by a quasiconformal mapping whose maximal dilatation is bounded by the
vonstant max{dgr (D(¢,0),D(t,s))!(t.s) € 10,1]?}. By the same argument as above,
we deduce that D(t,s) extends to a continuous map on the closed disk [0,0) x [0,1]
with D{es,5) = p for s € [0, 1]. Therefore, we conclude that limA,, (@) = limA; (a).
I'his means that limA,, (o) is independent of the choice of the reference pointc. [

Definition 3.10. Let p be the holonomy representation of the fiber group %, (F) in
the hyperbolic manifold By,. Then for an essential simple loop & € S, Ap(at) denotes
limAg, (o) € Cin Lemma 3.8.

4. McShane’s analysis of G

Iin this section we recall McShane’s analysis of the set G of the oriented simple com-
plete geodesics in a hyperbolic surface F = 1?2 /T, where I is the image of po € 7.
As in the previous section, we identify G with the subspace of S}, =R/{po(m)). Here
.\'/', inherits the standard metric from that of R. In particular, the total length of S}, is
1. Then the following result has been proved by McShane [McS98, Theorem 4 and
Proposition 3].

Proposition 4.1. (1) A consists of the isolated points of G, and G — A is a Cantor set
of measure 0.

(2) For 8 € A, let J(8) be the maximal open interval in S Il, such that J(8) N G = {8}
Ihen, generically, the two boundary points of J(8) correspond to the elements of G
which spiral to the oriented simple closed geodesics o(8) and B(8), respectively. Here
w(8) and B(8) are oriented so that they are homologous to 8 in the annulus obtained
from the punctured annulus bounded by o.(8) U B(8) through one point compactifica-
tion. In the special case when 0.(8) or B(8) is a peripheral circle around a puncture
4. the corresponding boundary point of J(8) is a simple oriented geodesic joining p

(o g.
(3) The length of J(8) is equal to hy,(8) for every d € A

McShane’s original identity [McS98, Theorem 2] is obtained from the above propo-
sition as follows. Since the measure of G — A is 0, the length of § 11’ is equal to the
infinite sum of the lengths of J(8) where & runs over all elements of A. Hence

1= Z (length of J(8)) = Z hpo(0) =2 Z hpo (9).
e 8cA Be
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By a similar argument, we obtain the following corollary.

Corollary 4.2. Let 1) and p, be elements of G — A C S\, Let [u,, ) be the interval
of S, ! such that olu,, ] = 1, — 1y with respect to the orientation induced from thc
natural orientation of §,,. ! Then the length of [u, ) is equal to :

Z . hpo (6) x
Selyy A

5. Absolute convergence
In this scction we prove the following proposition, which is used in the proof of The-
orems 2.2 and 2.3.

Proposition 5.1. For each p € QF, the infinite sum ZSEZ ho(8) converges absolutely
and uniformly on every compact subset of QF .

To prove this proposition, let [, (Y) = KA, () be the real translation length of p(y) .
for each ¥ € S. Then we have the following lemma.

Lemma 5.2. For any compact subset C of QF, there is a constant k = k(C) > 1 such :
that

%IPO (’Y) < lp ('Y) < klp() (Y)v

foranyy € S and p € C. Here py is a fixed element of F.

Proof. Since C is compact, there is a constant k > 1 such that every p € C is k-
quasiconformally cquivalent to pg. Hence we have the desired inequality by [JM79, "
Lemma 3] (cf. [Kap01, Theorem 8.57]). a

We may assume F is not a thrice-punctured sphere. After interchanging a.(d) and
B(3) if necessary, we may also assume Iy, (0(8)) > {5, (B(8)) for each § € A. Then we
have [,(a(d)) > 0 for any p € Q¥ . Hence

1
|1+ exp 3 (Ap((8)) + 20 (B(8)))
1

| (8)| =

= Texp 10 ((8)) 1+ Aa(B(®)) 1
< — :
oxp L0p(0(3)) < 1p (B3))) — 1
1 1

< T X 7 .
exp 5 (lp(a(8))) —1  exp5((B(8)))

(5.1)
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Set Up(y) - ——rfory S, Then we have the following lemma.
exp 3 (p(Y))

Lemma 5.3, For any compuact subset C of QF, there is a finite subset Sg of S, such
that the following inequality holds for every Yy € S — So and p € C:

1

spmy-1 -

In parvticular, for every p € C and for every 8 € A such that o(3) ¢ So, we have:
hp(8)] < 2Up(0x(8))Up(B(3))-
I"oof. Note that the first inequality in the lemma is equivalent to
Ip(Y) = 2log2.
lienee an element ¥ ¢ § does not satisfy the inequality only if
loo () < 2klog2,

where k = k(C) > 1 is the constant in Lemma 5.2. Let Sq be the set of the elements of
5 satisfying this inequality. Then So is a finite set and satisfies the first assertion. The
wcond assertion follows from the first one and the inequality (5.1). a

l.emma 5.4. For any compact subset C of QF, L, sUp (y) converges uniformly on
-

I'roof. We first recall a result of [BS85]. Let R be a fundamental domain for the
action of Iy = po(m1 (F)) on H? such that R is a finite sided geodesic ideal polygon.
Ihen the image, A, of dR in F consists of finitely many mutually disjoint simple
complete geodesics each of which joins punctures of F. We identify .§ with the set of
~imple geodesics on the hyperbolic surface ¥ = H?/T. Then each y € S intersects A
trunsversely: we denote the cardinality of the intersection YN A by ||v].

Claim 5.5, There is a positive constant ¢ such that lp,(y) > c||Y|| for any y€ S.

I’roof. By [BS85, Lemma 3.1 and Corollary 5.3}, this holds with finitely many excep-
tions. Since ||y|| > 1 for any Y € S, we have the desired assertion. a

Set S(n) ={y € S|||[vll = n}. Then by [BS85, Lemma 2], there is a polynomial
I’y(n) such that #5(n) < Py(n). On the other hand, for every y € $(n) and p € C,
where C is a compact subset of Q¥ , we have the following inequality by Lemma 5.2
and Claim 5.5:

b0 = £l ) = Sl = .
TR Tk k
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Here k = k(C) is the constant in Lemma 5.2. Hence, for every p ¢ (',

Yo=Y | T v )<y R

yeS n=1 \yeS(n) n=1 exP(z—Ck”)
So, YyesUp (y) converges uniformly on the compact set C. d

Proof of Proposition 5.1. Let C be a compact subset of Q¥ , and pick areal€ > 0. By,
Lemma 5.4, there is a finite subset S¢ of § containing the finite set §¢ in Lemma 53,
such that, for every p € C, H
Y ULln<e

1S -Se i
Let A¢ be the subset of A consisting of those elements & such that {c(5),B(8)} C:
SeUP. Since Se U P is a finite set, Ag is also a finite set. Moreover, by Lemma 5.3;1{
we have: L

i
4
12

Y imp@®)<2 Y Up(o(d)Up(B(3))

de A-Ag deA—Ag
<2 Z Up(o) Z Up(B)
acS-Se BeSUP

<2 (#P+ Y Upy(v) |,
yeS

where #P denotes the cardinality of . In the above, the second inequality follows
from the following fact:

If 8 € A— A then after interchanging o(8) and B(8) if necessary, we may
assume 0(8) € § — S and B(8) € SUP.

By Lemma 5.4, the last term is bounded above by a constant depending only on C.
This completes the proof of Proposition 5.1. O

6. Proof of Theorems 2.2 and 2.3

Proof of Theorem 2.2. By Proposition 5.1, the correspondence p - zSeZ hp(8) de-
fines a holomorphic function on the complex manifold Q¥ . On the other hand, Mc-
Shane’s original identity (Corollary 4.2) shows that the holomorphic function takes the
constant value 1 on the totally real submanifold 7. Hence the holomorphic function
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st be the constant function 1 by the theorem of identity. So, we have:

1 1
Z hp(8) == 5 z;hp(S) =3
seA ScA

O

l'or each p € Q¥ , there is a quasiconformal mapping f, of C which is (po,p)-
wuivariant, ie., p(Y) = f o po(y) ofy L, as homeomorphisms of C, for every Y €
i (1), By the identification of QF with a subspace of Hom(m; (F),PSL(2,C)) pre-
w nhed in Section 2, f, fixes the three points 0, 1 and o. Though f, is not unique,
its testriction to the limit set R of Ty is uniquely determinced by p. Thus we obtain a
well-defined map

QF xR 3 (p,z) — fo(z) € C. (6.1)

Ihis is holomorphic in the sense that the mapping QF 3 p — f,(z) € Cis holomorphic
lor any z € R, because it is proved by Ahifors and Bers [AB60] that the normalized
ymasiconformal mapping of C depend holomorphically on the complex dilatation (cf.
¢ p. [Gar87, Chapter 1, Theorem 5], [IT92, Theorem 4.37]).

Recall that é is the set of oriented complete geodesics in H? emanating from
.- which projects to a simple geodesic in F = H?/I. For i € é and p € QF, let
pl1) = fo(zpo (1)) be the image of the endpoint zp, (i) of 1 by f,. We denote by i,
ihe oriented geodesic emanating from oo and ending at zp (7). If z € G is the image of 7
m /. then we denote by , the image of zi, in the hyperbolic 3-manifold 3 /p (i (F)),
and call it the geodesic representative of u in H /p(nt; (F)).

I'roof of Theorem 2.3. We fix a quasifuchsian representation py € QF . Let plf be the
hending lamination of p; and ¢ an element of G disjoint from |pl®| (€ = £). Then
the geodesic representative uf of yin M := 3 /p1 (1 (F)) lies in the boundary 95Mo
ol the convex core My of M. Let i1 be an element of E which projects to yf. Then prl
lics in the boundary component, 08 C(A), of the convex hull of C(A) of the limit set
A of pi(m1(F)). By the arguments in the proof of [AMS04, Lemmas 3.1 and 3.2], we

hive
width,(A) =S (zp, (1) —2p, (7)) . 6.2)

Let w: QF -— C be the mapping defined by w(p) = zp(#") — zp(#~). Then w is
holomorphic, because w(p) = fp(zp, (H")) — fp(2py (7)) and the mapping (6.1) is
holomorphic.
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Case 1. y= ¢ A. Then, by Corollary 4.2, we have the following identity for eve%
pPEF:
wp)= ), h(3) inR/Z,
OcA,

R

where A, is the subsct of A which lies between yu~ and u' with respect to the cyclﬁi
order. By Proposition 5.1, we see that ):8 A hp(8) is a holomorphic function of

p € Q¥ . Hence, the above identity holds for every p € Q¥ by the theorem of 1dent1tyg
By (6.2), we obtain the desired identity. .z_:

Case 2. i € A for some €. For simplicity we treat the case where y* € A, (Th‘i
other cases can be treated in a similar way.) Let ¢/® be an element of G — A whlc:g
spirals to one of the oriented simple closed geodesics ot(1€) or (). Then it is disjoinh
from pl®, Let ZL I_IK;,r be the partition of A — {«/",1'*} — A determined by {¢/~, /" ;
by Proposition 4. 1(2) Then the difference between the scts AL and AL (resp. AR
AR) is at most {u~,p"}. Since Theorem 2.3 holds for Case 1, we have

=
Forn

+width,(A) =3 Y hp(8)=—-38 Y hp(d)
Y 8cAr

et £ 0 TR

On the other hand, since € is disjoint from the bending locus 'pl®|, the pair of loops
{a(f), (")} lies in the flat piece of the convex core boundary. This implies thaﬂ
hp (1) is real and hence :

3 Y BB =3 Y h(d), 3 Z ho(8) =3 Y ho(3).
deA, 3eh, deAg 563;

Llmen e et

Thus we obtain the desired identity. |

7. Proof of Theorem 3.2

By taking a power of @, we may assume the number rng in Definition 3.6 is equal
to 1, because Modulus(d,B,) = Modulus(d,Bgm ) by dcfinition. Then the homeo-
morphism @ : d,F — d,F has finitely many attractive/repulsive fixed points, which
are arranged on d,F alternately (see Lemma 3.3). Moreover, ¢ preserves each sin-
gular leaf of % emanating from p. Pick such a singular leaf L of F+. We may
assume the meridian m intersects L transversely in a single point, xp. Then after a
bounded isotopy, we may assume that @ preserves L and fixes xo. Then the longitude
I C By is homotopic to the loop which is obtained as thc image of {xp} x [0,1] in
By =F x[0,1]/(x,0) ~ (¢(x),1). We denote the image of (xp,0) in By by the same
symbol xo, and identify I with the fiber F x 0 in By. Then the fundamental group
71 (Bg,Xo) is an HNN extension of 71 (F,xp) by the infinite cyclic group () with the
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tellowing relation:

ey (Y € T (F,xp)).

1.t L be a lift of L to the universal cover H?2 emanating from the parabolic fixed

wnnt oo of po(m) = L . Let @ be the lift of @ which preserves L.
| 0 1 o p

femma 7.1, For everyy € 1 (F,xp), we have

-1

Po(@+(Y)) = @opo(Y) o ®

s homeomorphisms of H2. In particular, for every non-peripheral element y € 7y (F,xo),
we have

Fix* (po(0«(Y))) = ®(Fix " (po(7)))-

IMoof. Let xg be the lift of xp contained in L C H2. Then the representation p :
i (7,x0) — PSL(2,R) = Isom™ (H?) gives the identification of the fundamental group
ny(IF.x0) with the covering transformation group via the point Xp in the following

WHASCI

Let ybe an element of 71 (F, xp) represented by a path ¢ : ([0,1],{0,1}) —
(F.xp). Then the covering transformation po(y) maps Xp to the endpoint
(1), where € is the lift of ¢ to FI? with £(0) = Xp.

In lact, we can check this for the meridian m by using the fact that L is a lift of L
vmanating from the parabolic fixed point of po(m). This implies that the condition
holds for every element of & (F,xg).

Now we identify the universal cover of By, with 2 x R and identify the fundamen-
Ial group 7y (Bg, xo) with the covering transformation group via the point (x,0). Then
we see that each y € = (F, xp) is identified with the covering transformation pg(Y) x id
ind that the longitude ! is identified with the covering transformation @ x (--1), where
{ 1-1) denotes the translation of R by 1. Hence, the relation Y1~ ! = @, (Y) implies the
first assertion. The second assertion is an immediate consequence of the first one. [J

Recall that the set Kq, is defined to be [y, ¢p ()] NA, where [, @p(u)] is the closed
sub-interval of a component, J, of S’], — Fix(¢p) bounded by p and @, (u) (see De-
finition 3.6). Here y is an arbitrary element of JN (G —A). So we may assume
that u spirals to an oriented simple closed geodesic y. Let i be a lift of the ori-
ented geodesic u C F = H2 /T to H? emanating from oo. Then there is an clement of
r(F,xp), denoted by the same symbol v, which represents the closed geodesic ¥ such
that zp, (i£) = Fix* (po(Y)), where zp, (i) is the endpoint of 1 in R = 9H? — {co}.
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Lemma 7.2. We have

Fix* (po(@+(Y))) —Fix* Z hoo (8
3ch, h‘

Proof. By Lemma 7.1, Fix™ (po(@:(1))) = §(Fix (po(y))) = (zpo (i)). By the deﬁf
nition of ¢, : G — G (see Section 3), zp, (¢ (1)) = P(2p, (11)). Hence

Fix™ (po(@«(Y))) -Fix*(po(Y)) = (T)(Zpo (1)) — zpo (11)
= 2po (Pp (1)) — 2po (11)-

¥

Since G(L) =L, § fixes the endpoint of L in R = 9H?2 — {o}, and hence the fixed pois

set of Q|g is equal to the inverse image in R of the fixed point set of @, : S}, - + S}, Sd;,
2Zpo (1) and @(zp, (1)) lie in a single component, say J, of R — Fix(9), whlch pro_]ecﬁ
isometrically to the component J of S1 Fix(¢,), with respect to the standard metrl(é
Hence zp, (Qp (1)) — 2p, (11) is equal to = of the length of the interval {u, @, (u)] CJ &
S,',. The sign depends on whether u and @, () lies in J in this order with respect to thﬁ
orientation of J induced by that of R. Hence, by Corollary 4.2, we obtain the desireﬁ
result, because of the assumption we made in Remark 3.7 (2). _ q

&:&:;&s’?@fé}.‘—:&.z«. il

Recall that we have chosen a holomorphic cross section QF — Hom(m; (F), PSL(i

so that p(m) = for every p € Q¥ . Thus we can sce that the proof of Lemmi
p

01
7.2 works for every p € ¥, and we obtain the following lemma.

Lemma 7.3. Forany p € ¥ C Hom(m,(F),PSL(2,C)), we have

Fix* (p(9: (1)) —Fix" (p(1) = ) /p(8). ]
3ch, "

Lemma 7.4. Forany p € QF, we have i

Fix™ (p(9.(1))) —Fix“(p(1)) = ¥ £p(8).
3eh,

Proof. By Proposition 5.1, the infinite sum on the right hand side converges absolutely
and locally uniformly on Q% . Hence it is holomorphic on Q% . On the other hand, the
left hand side is obviously holomorphic on Q¥, and it coincides with the right hand
side on the totally real analytic submanifold F by Lemma 7.3. Hence the identity
holds for every p € QF. O

Let pe : 71 (Bg,%o) - » PSL(2,C) be the holonomy representation of the complete
hyperbolic structure of B,. Then we may assume that the restriction of p.. to 71 (F, xg),
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which we continue (o denote by the same symbol, lies in the closure of the image of
the holomorphic section QY » Hom(m; (#), PSL(2.C)) (which we fixed in Section
1 and that the following identities hold.

0w () = ((]) :) , ou(l) = ((1) Modululs(al,Bq,)> ‘

then we have the following lemma.

L.emma 7.5. For any non-peripheral element y € ®)(F,xg), we have

Fix “ (peo(@4 (1)) — Fix™ (pwo()) = Modulus(8,,By),
P'roof.

Fix* (pe(@x(7))) = Fix* (poo(I¥1™"))
= Peo (1) (Fix* (poo (7))
= Fix* (po(Y)) + Modulus(9,,By).

We shall prove the following proposition in the next section.

PProposition 7.6. Let {p,} be a sequence of quasifuchsian representations which con-
verges strongly to Pes. Then the infinite sum ZSEZ“, ho..(8) converges absolutely, and

Y B (®)=lim Y k().
Sely 8cA,

By assuming this proposition, we can complete the proof of Theorem 3.2 as fol-
lows. Let {p, } be a sequence in QF as in Lemma 3.8, which converges to p.. strongly.

Icn we have:
Modulus(d,Bg) = Fix™* (Pes(P«(Y))) — Fix T (pus()) by Lemma 7.5
= lim (Fix* (pn(9:(Y))) — Fix* (pa(¥)))
= lim 2 hp,, () by Lemma 7.4
e,
= Z ho..(8) by Proposition 7.6.

e,



Ry

176 Akiyoshi, Miyachi & Sakuma

8. Proof of Proposition 7.6 ;
For a type-preserving faithful discrete representation p : 7t (F) — PSL(2.C) and y € .!
such that p(?) is not parabolic, we denote by 7, the geodesic representative of y in thi

hyperbolic manifold M, = ]HI3 /p(mi(F)). Let p. and p, be the representations i‘
Proposition 7.6, and set M. := M, and M,, := M.

Lemma 8.1. There is a horospherical neighborhood C of the cusps of M. whzch
disjoint from the closed geodesics Yp,, for every Y € S.

5 '-'f'?...::gw;:,-t Kt

4
Proof. 1t is well-known that there exists €y > 0 such that, for any 6 € Teich(F), everég
simple closed geodesic on the hyperbolic surface (F, ) is disjoint from the cuspidﬂ
components of the €o-thin part (cf. e.g. [CEG87, 2.2.4 Corollary]). By [Min(0{ .'
Lemma 3.1], there exists €1 > 0 such that, if g : (F,0) — M. is a ;-injective pleate@
surface then only the €o-thin part of the surface can be mapped into the €;-thin part of}
M... Let Cw be the union of cuspidal parts of the €;-thin part of M... Then C.. satisfieg

the desired property, because any element Y € S is realized by a 7t;-injective pleated
surface.

Let S (&P) be the set of all ¥ € $ such that ¥y is isotopic to ®(8) or B(3) for somﬁ
3 €Ay

Lemma 8.2. There is a compact submanifold K.. of M. which contains the close
geodesic Yo, for every Y€ S (A(p)

Proof. Set M® := M., —intC.,, where C. is as in Lemma 8.1. Note that M2 ’i;}
precisely two ends, £~ and E*. Pick a fundamental neighborhood system {Ui+};?°=17
of E* such that U; FoUt, -1 (U =1,--+ ,00). Suppose to the contrary that the assertio: g

does not hold. Then we may assume that there is a sequence {y;} in S (Z¢) such thatj

Claim 8.3. A subsequence of {(Y;)p..} exits the end E*.

Proof. Suppose the claim does not hold. Then there is a compact subset K of M2 suchf
that (y;)p,, NK # 0 for every j. Let g; : (F,6;) — M. be a (marked) pleated surface in.'
the correct homotopy class which realizes (Y;)p,,. By compactness of marked pleated.‘§
surfaces meeting K (see [CEG87, Corollary 5.2.18]), the pleated surface g; converges §
to a pleated surface g : (F,06) — M., that is, g : F — M. (after precomposition with
diffeomorphism of F isotopic to the identity) converges to g : F — M. in the compact- f
open topology. Now pick a point x; € (¥;)p., N UjJr c gi(F) NMS. let Fybea compact-.
neighborhood of g=' (M) in F. Then we may assume that x; = g;(y;) for some y; € §
Fo. Let y. be the limit of a subsequence of {y,}. Then the corresponding subsequence ;
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Sp
A/ 2aY
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u

IFigure 4: In each figure, the black/white dots represent attractive/repulsive fixed points.

ol {xv;} = {g;(y;)} converges to g(ye) € g(Fp). Since MY, is closed, g(y..) € M. This
contradicts the facts that x; € U; and that {U j};“zl is a fundamental neighborhood
wystem of the end ET, O

By the above claim and compactness of PML(F), we may assume that ¢;Y;, for
whtable £ > 0, converges to a measured lamination v/ in M L(F). By [Can93, Propo-
-ition 10.1], the support of V' is equal to the ending lamination of E*, which in turn
vvincides with the support [v*| of the stable lamination v of @. Let Y. be the limit of
(1 subsequence of) the geodesic representatives, in the hyperbolic surface F, of {y;} in
ihe Hausdorff topology. Then, it is known that [vt| C Y. (cf. [Ota01, Remark A.3.2]).

On the other hand, by the definition of $ (Kq,), we may assume that ¥; = o(3;) for
wome 8 € Zq, Let ., be the geodesic lamination obtained as the limit of (a subse-
(uence of) 8; in the Chabauty topology. Let Tbe alift of the interval I := [u,@,(u)] C
v, - Fix(p,) to OH? — {oo}.w Then each §; has a unique lift 3 ; to H? emanating from
~-und ending at a point in / (see Figure 4). Hence 3. contains a leaf L which is the
muige of a geodesic L joining oo to a point in I. Recall that the inverse image V‘l
ol |v¥| in H? contains the boundary of the convex hull of Fix™(9|y2), where @ is
the lift of @ such that Fix(§|ygz) 2 {=} (see Proof of Lemma 3.5). Moreover, the
mterval T is contained in a component of 9H2 — Fix(|y2)- 1lence, L must intersect
lv " | transversely, and therefore L intersects |v*| transverscly (sce Figure 4). However,
this is impossible, because ¥;N3; =0 and |v*| C Y.. Hence we obtain the desired
result, O

The standard frame at the origin of the Poincaré model of H> determines a base
lrame @, of the hyperbolic manifold M, (n € NU{eo}). We may assume that (the
origin of) M. lies in the compact submanifold K.. Since p,(m1(F)) converges to
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P(T (F)) geometrically, there arc smooth embeddings /,, : K.. - M,,, defined forﬂ‘_
n sufficiently large, such that f, sends ®. to ®, and f, tends 10 an isometry in tﬂ
C=-topology. Namely, the lift f,, : Koo — 13 of f, to the inverse image K. of K. ﬁ
H3, sending the standard frame at the origin to itself, tends to the identity map in tlﬁ
compact-open C”-topology (see [BP92, Theorem E.1.13], [McM96, Section 2.2ﬁ
Since p, converges to p.. algebraically, we may assume that the following diagraﬁ
is commutative, where the vertical arrows represent homomorphisms induced by th§
inclusion maps and o, denotes the origin of the frame @), for n € NU {eo}: ¢

S

"
o

T

P

7y (My,0n) £'ﬂ°i ) (Moo, 0cc) 3
! |
(o) (M1 (Kemy0) <2 ) (Ken,00) ;

Fix a positive real number r > 0. We shall prove the following lemma in the ne
section.

any n > Ny and for any closed geodesic Y in M. which lies in K, the r-neighborho :
of fu(Y") contains its geodesic representative in Mp,.

desic representative. Hence the above lemma implies that Y, is contained in the fl
neighborhood of f;(Yp,,) in M, for every ye § (Zq)) andn > N;.

Fix a positive real number R > r, and let K., be the closed R-neighborhood of K.
M... Then we may assumc that f, : K., — M,, extends to an embedding of K, into M, aj
which we continue to denote by f,,, such that the lift fn : K, — H3 tends to the identit!
map in the compact-open C”-topology. By the last condition, we can see that there
a natural number N; > Nj such that the r-neighborhood of f,(Kw) in M,, is contained)
in f,(K.,) for each n > N,. Hence, the geodesic representative Yp, of fn(¥p..) in M,
contained in f,(K.,) forevery y€ S (K‘p) and n > Nj. :

On the other hand, since ﬁ, tends to the identity map in the compact-open

topology and since K, is compact, there is a natural number N3 > N such that

Ll {(fa)sMl
25T <P

forany n > N3, v € T,M.. - {0} and x ¢ K.,. Hence we obtain the following inequali
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ties tor every Ye S(A‘q,) and n - Ny,

o, (V) = 1o, (Vo) = 1o, (n(¥p.e)) < 2. (Ypoo) = 20p..(Y),
b (V) = lp..(Yo..) < lp.. (fn_l(an)) <2, (Yp.) 2, (V)

In the second inequality, we use the fact that y,, C fo(KZ,). Since p, € QF for every
n+ 111 {0}, the above inequality together with Lemma 5.2 implies the following.

l.emma 8.5, There exists k > 1 such that
1
Elpo (Y) S lP (Y) S klpo (Y)

forevery p € {pa|n > 1} U{pe} andy € S(Z(p)

I"oof of Proposition 7.6. By using Lemma 8.5. we can show that ):Sezq, hp(8) con-

verpes absolutely and uniformly on {p, |7 > 1} U {p«} through an argument parallel
1 the proof of Proposition 5.1. Hence, for any € > 0, there is a finite subset Z(p‘g of Zq,
-nch that the following inequality holds for every n € NU {oo}:

IR

86&—3%5

{m the other hand, since p, converges to p., and since Zq,s is a finite set, we have the
lnllowing inequality for every sufficiently large #.

’ Z hp.. (8 ): hp, 8)'<p.

ScAge Schye

Ience

PESUES WAC!
Scko Sch

Y hp.(8)~ ) By, a)i l

hpm(f»)] +-] y hpn<8>]
8654;,5 865@.& _"

ScAp—Age
<e+e+e=3e.

I'his completes the proof of Proposition 7.6. O
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Figure 5: The Poincaré ball model for the hyperbolic space; the horizontal straight line segmel_‘

represents the geodesic ¥*, and the two circular arcs encircling ¥* represent the boundary of h‘f
r-neighborhood of ¥*, to which ¥ tangents from the inside of the neighborhood. 3

9. Proof of Lemma 8.4

S

The key idea for the proof of Lemma 8.4 was brought to the authors by K. Brombergi
If a loop in a hyperbolic manifold is far away from its geodesic representative, then the
“geodesic curvature” of the loop at the point where the distance attains the maximurg
should be large (see Figure 5).

The precise meaning of the idea is stated as follows. g

Lemma 9.1. Let v: R — H? be a smooth path and Y* a complete geodesic in H?
Suppose the distance, r(t), from the point ¥(t) to ¥* attains a local maximum att =1
Then ||(Vi¥)(to) | 2 |[7(0)]|* tanh r(zo).

Proof. We will use the cylindrical coordinates, (,0,z) € R>¢ x S' x R, around the
geodesic ¥*; i.e., r is the distance from y*, 6 represents the rotation around y*, and

represents the translation along y*. Then the hyperbolic metric at the point (r,8,z) i
of the form 1

dr? +sinh?rd6? +cosh?rdz2.

Let (r(z),0(z),z(t)) be the expression of () with respect to the cylindrical coordi-
nates. Since r(t) attains a local maximum at t = tg, it follows that 7(tg) = 0. Thus

19(20) 1> = 8(t0)? sinh? r(ty) + 2(t0)* cosh? r(zo)
< {é(z‘o)2 t+ z'(to)z} cosh? (1),
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il henee

YPRUEpRC S (]
o) 1 2(00)" = 2 -

On the other hand, we obtain the following by a dircct calculation:

Viy= (¥— (6> + ) sinhrcoshr) %

. . .. 0
+ (0+2rBtanhr) 3" (Z+ 27ztanhr) %
Smee r(t) attains a local maximum at t = #, it follows that #(tp) < 0. Thus

V(to) | > |#(to) — (8(20)* + 2(t0)*) sinh r(tg) coshr(ry ) |
= —#(to) | (B(to)* + 2(t9)?) sinh r(ty) coshr(rg)
> (0(t0)? + 2(t0)?) sinh r(z9) cosh r(tg)

. @l

> I
cosh” r(to)

sinhr(rg) coshr(ty) -: ||¥{fo)||* tanh r(to).

I'his completes the proof. O

Remark 9.2, The estimate in L.emma 9.1 is best possible. In fact, if y(¢) = (ry,0¢,)
m the cylindrical coordinate around the geodesic y* with constants rg > O and 6
(namely 7y is equidistant from y* and lies in a hyperbolic plane containing v*), then the
incquality is actually an equality.

lemma 9.3. Let y: R — M be a closed smooth curve in a hyperbolic 3-manifold
M with geodesic representative Y*. Suppose for some 0 < € < 1 and r € [0,0) that
min{[|¥(1)|| | € R} > € and that max{||(Vy})(t)|| |t € R} < €*tanhr. Then ¥* is con-
tuined in the r-neighborhood of .

I'roof. First, we will prove that 7y is contained in the r-neighborhood of y*. Let ¥
and ¥*, respectively, be lifts of y and y* to H>, such that y and y* share the same
cadpoints. Then they are invariant by a loxodromic transformation with axis v, and
henee R := max{d(Y(¢),¥*) |t € R} exists. Suppose that the maximum is attained at
{  fy. By Lemma 9.1, it follows that ||(V{y)(t0)|| > |[¥(to)||*tanh R. Then, by using
(he assumptions, we obtain:

& tanhr > max{[| (V) (1) | | € R} > | (Vi) (o)

> ¥(1o) 2tanhRe? tanh R.

Hence tanh 7 > tanh R and therefore r > R. So ¥ is contained in the r-neighborhood of

7.
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Next, we prove that ¥* is contained in the r-neighborhood ol y. l.et x be any pol‘
of ¥* and I the hyperplanc of H> which intersects ¥* perpendicularly at x. Since,
and ¥* have the same endpoints, some point, y, of ¥ is contained in I1. Notice thy ':
x is the nearest point in ¥* to y. Since ¥ is contained in the r-neighborhood of "h
d(x,y) < r. Hence x is contained in the r-neighborhood of Y. Thus ¥* is contami
in the r-neighborhood of ¥, and therefore ¥* is contained in the r-neighborhood of ‘g

3

. 4
Proof of Lemma 8.4. Fix r > 0 and 0 < € < I arbitrarily. Since f, converges to th§
identity map in the compact-open C*-topology, there is a natural number N; with thj

following property:

Let yv*: R — M.. be a closed geodesic in M., which lies in the compact
set K., and is parametrized by the length. Let ¥,: R - » M,, be the smooth
closed curve obtained as the composition f, oy*. Then for any n > N,
the following hold.

min{||¥(r)|| | ¢ R} > €, max{||(Vy, 1) ()| |r C R} < € tanhr.

R W LT S R R

By Lemma 9.3, N satisfics the desired property. This completes the proof.
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Train tracks and the Gromov boundary
of the complex of curves

Ursula Hamenstiidt!

. Introduction

t‘onsider a compact oriented surface S of genus g > 0 from which m > 0 points, so-
valled punctures, have been deleted. We require that 3g - - 3 +m > 2; this rules out a
sphere with at most 4 punctures and a torus with at most one puncture.

In [Har81], Harvey defined the complex of curves C(S) for S. The vertices of this
complex are free homotopy classes of essential simple closed curves on S, i.e. curves
which are not freely homotopic into a puncture. The simplices in C(S) are spanned
Iy collections of such curves which can be realized disjointly. Thus the dimension of
('(8) equals 3g—3+m 1 (recall that 3g — 3 4+ m is the number of curves in a pants
decomposition of S).

The extended mapping class group j{g,m of § is the group of all isotopy classes
ul" homeomorphisms of S. It acts naturally on the complex of curves as a group of
simplicial automorphisms. Even more is true: If § is not a torus with 2 punctures or
a1 closed surface of genus 2, then the extended mapping class group is precisely the
rroup of simplicial automorphisms of C(S) (see [Iva02] for references and a sketch of
the proof).

Providing each simplex in C(S) with the standard euclidean metric of side-length
| equips the complex of curves with the structure of a geodesic metric space whose
1sometry group is just ﬂfffg,m (except for the twice punctured torus and the closed sur-
face of genus 2). However, this metric space is not locally compact. Masur and
Minsky [MM99] showed that nevertheless the geometry of C(S) can be understood
yuite explicitly. Namely, C(S) is hyperbolic of infinite diameter. Recall that for some
& > 0 a geodesic metric space is 8-hyperbolic in the sense of Gromov if it satisfies the
O-thin triangle condition: For every geodesic triangle with sides a,b, ¢ the side c is
contained in the 8-neighborhood of aUb. Later Bowditch |[Bow02] gave a simplified
proof of the result of Masur and Minsky which can also be used to compute explicit
hounds for the hyperbolicity constant 3.

"Partially supported by Sonderforschungsbereich 611
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A 3-hyperbolic geodesic metric space X admits a Gromov boundary which is dee
fined as follows. Fix a point p € X and for two points x,y € X define the Gr()mof
product (x,y)p = %(d(x, p) +d(y,p) —d(x,y)). Call a sequence (x;) C X admissible
if (x;,x;)p — oo (i, j — ). We define two admissible sequences (x;), (y:) C X to b§
equivalent if (x;,y;)p — o. Since X is hyperbolic, this defines indeed an equivalenca
relation (see [BH99]). The Gromov boundary dX of X is then the set of equivalencé
classes of admissible sequences (x;) C X. It carries a natural Hausdorff topology.
with the property that the isometry group of X acts on dX as a group of homeos:
morphisms. For the complex of curves, the Gromov boundary was determined by,
Klarreich [K1a99). )

For the formulation of Klarreich’s result, recall that a geodesic lamination for &
complete hyperbolic structure of finite volume on § is a compact subset of S which ig;
foliated into simple geodesics. A simple closed geodesic on S is a geodesic laminationi':g
with a single leaf. The space L of geodesic laminations on § can be equipped with
the Hausdorff topology for compact subsets of S. With respect to this topology, L 13@
compact and metrizable. A geodesic lamination is called minimal if each of its half-?z_
ieaves is dense. A minimal geodesic lamination A fills up S if every simple closedg
geodesic on § intersects A transversely, i.e. if every complementary component of A isz
an ideal polygon or a once punctured ideal polygon with geodesic boundary |CEG87]. ‘

A geodesic lamination is maximal if its complementary regions arc all ideal tn-;
angles or once punctured monogons. Note that a geodesic lamination can be both
minimal and maximal (this unfortunate terminology is by now standard in the liter-
ature). Each geodesic lamination A is a sublamination of a maximal lamination, i.e."i
there is a maximal lamination which contains A as a closed subset [CEG87]. For any;
minimal geodesic lamination A which fills up S, the number of geodesic laminations
which contain A as a sublamination is bounded by a universal constant only depending |
on the topological type of the surface S. Namely, each such lamination 4 can be ob-
tained from A by successively subdividing complementary components P of A whiché
are different from an ideal triangle or a once punctured monogon by adding a simple ‘;"
geodesic line which either connects two non-adjacent cusps of P or goes around a !
puncture in the interior of P. Note that every leaf of y which is not contained in A is
necessarily isolated in u.

We say that a sequence (A;) C L converges in the coarse Hausdorff topology to a 1
minimal lamination g which fills up S if every accumulation point of (};) with respect
to the Hausdorff topology contains u as a sublamination. We equip the space B of 1
minimal geodesic laminations which fill up S with the following topology. A setA C B i
is closed if and only if for every sequence (A;) C A which converges in the coarse '
Hausdorff topology to a lamination A € B we have A € A. We call this topology on ‘B ‘

the coarse Hausdorff topology. Using this terminology, Klarreich’s result [K1a99] can |
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I formulated as follows,

Theorem 1.1,

(i) There is a natural homeomorphism A of B equipped with the coarse Hausdorff
topology onto the Gromov boundary dC(S) of the complex of curves C(S) for S.

(i) For u € B a sequence (¢;) C C(S) is admissible and defines the point A(u) €
dC(S) if and only if (¢;) converges in the coarse Hausdor{f topology to p.

In the paper [K1a99], Klarreich formulates her result using measured foliations on
the surface S, i.e. topological foliations F on S cquipped with a transverse translation
mvariant measure. The space MF of measured foliations can be equipped with the
wuak*-topology which is metrizable and hence Hausdorff. This topology projects to a
metrizable topology on the space PM Y of projective measured foliations which is the
ijuotient of M F under the natural action of the positive half-line (0,). A topological
foliation on S is called minimal if it does not contain a trajectory which is a simple
closed curve. For every minimal topological foliation F, the set of projective mea-
wured foliations whose support equals F is a closed subsct of PM ¢, It follows that the
yuotient Q of the space of minimal projective measured foliations under the measure
forgetting equivalence relation is a Hausdorff space as well. Note that the extended
mapping class group of S acts on Q as a group of homeomorphisms. Klarreich shows
(that Q can naturally be identified with the Gromov boundary of the complex of curves.

There is a natural map 1 which assigns to a measured foliation F on S a measured
geodesic lamination \(F), i.e. a geodesic lamination A together with a transverse trans-
lation invariant measure supported in A. The geodesic lamination A is the closure of
the set of geodesics which are obtained by straightening the non-singular trajectories
of the foliation (see [Lev83] for details), together with the natural image of the trans-
verse measure., A measured geodesic lamination can be viewed as a locally finite Borel
measure on the space of unoricnted geodesics in the hyperbolic plane which is invari-
ant under the action of the fundamental group of S. Thus the space ML of measured
geodesic laminations on S can be equipped with the restriction of the weak™-topology
on the space of all such measures. With respect to this topology, the map t is a home-
omorphism of M¥F onto ML which factors to a homeomorphism of the space PM F
of projective measured foliations onto the space PM L of projective measured lamina-
tions, i.e. the quotient of ML under the natural action of (0,0). This homeomorphism
maps the space of minimal projective measured foliations onto the space MPM L of
projective measured geodesic laminations whose support is a minimal geodesic lam-
ination which fills up S. Since every minimal geodesic lamination is the support of a
transverse translation invariant measure (compare the expository article [Bon01] for a
discussion of this fact and related results), the image of MPM L under the natural for-
getful map IT which assigns to a projective measured geodesic lamination its support
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cquals the set B. As a consequence, our above theorem is just a reformulation of the
result of Klarreich provided that the coarse Hausdortf topology on ‘B is induced fr0m>
the weak*-topology on MPM L via the surjective map IT. :

For this it suffices to show that the map IT is continuous and closed. To show con=+
tinuity, let (1;) C MPML be a sequence of projective measured geodesic laminations, *
Assume that y; — y € MPML in the weak*-topology, so that the support IT(u) of u 8-
contained in ‘B. Since the space of geodesic laminations equipped with the Hausdorff_‘
topology is compact, up to passing to a subsequence we may assume that the lamina- :
tions II{y;) € ‘B converge as i — oo in the Hausdorff topology to a geodesic lamination',f
A. Then A necessarily contains the support II(u) € B of u as a sublamination and ;
therefore IT(u;) — () in the coarse Hausdorff topology. Note however that A may
contain isolated leaves which are not contained in the support of ¢ [CEG87]. Since
MPML and B are Hausdorff spaces, this shows that the map IT is indeed continuous._{:.;

To show that the map ITis closed, let A C MPML be a closed set and let () C A
be a sequence with the property that (TT(u;)) C ‘B converges in the coarse Hausdorff™
topology to a lamination A € B. Up to passing to a subsequence we may assume ;
that the geodesic laminations I1(y;) converge in the usual Hausdorff topology to a
lamination A containing A as a sublamination. Since the space of projective measured
laminations is compact, after passing to another subsequence we may assume that
the projective measures y; converge in the weak*-topology to a projective measure y
Then u is necessarily supported in A. Now A fills up S by assumption and therefore i
every transverse measure on A is supported in A. Thus we have y € MPML, A =T1(u)
and, moreover, u € A since A C MPML is closed. This shows that IT is closed and
consequently our theorem is just the main result of [K1a99].

Klarreich'’s proof of the above theorem relies on Teichmiiller theory and the results '
of Masur and Minsky in [MM99]. In this note we give a more combinatorial proof ;
which uses train tracks and a result of Bowditch [Bow02]. We discuss the relation ,
between the complex of train tracks and the complex of curves in Section 2. The :

proof of the theorem is completed in Section 3.

2. The train track complex

A train track on S is an embedded 1-complex T C S whose edges (called branches) are
smooth arcs with well-defined tangent vectors at the endpoints. At any vertex (called a
switch) the incident edges are mutually tangent. Through each switch there is a path of
class C! which is embedded in T and contains the switch in its interior. In particular,
the branches which are incident on a fixed switch are divided into “incoming” and
“outgoing” branches according to their inward pointing tangent at the switch. Each
closed curve component of T has a unique bivalent switch, and all other switches are
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at least trivalent. The complementary regions of the train track have negative Euler
vharacteristic, which means that they are different from discs with 0,1 or 2 cusps at
ihe boundary and different from annuli and once-punctured discs with no cusps at
e boundary. We always identify train tracks which are isotopic. Train tracks were
mvented by Thurston to study the structure of the mapping class group. A detailed
aceount on train tracks can be found in {[PH92] and [Mos].

A train track is called generic if all switches are at most trivalent. The train track
t is called transversely recurrent if every branch b of 7 is intersectcd by an embedded
simple closed curve ¢ = ¢(b) C S which intersects T transversely and is such that
S T —c does not contain an embedded bigon, i.e. a disc with two corners at the
boundary.

Recall that a geodesic lamination for a complete hyperbolic structure of finite vol-
wme on S is a compact subset of § which is foliated into simple geodesics. Particular
peadesic laminations are simple closed geodesics, i.e. laminations which consist of
a single leaf. A geodesic lamination A is called minimal if each of its half-leaves is
dense in A. Thus a simple closed geodesic is a minimal geodesic lamination. A mini-
mal geodesic lamination with more than one leaf has uncountably many leaves. Every
yeodesic lamination A is a disjoint union of finitely many minimal components and a
finite number of non-compact isolated leaves. Each of the isolated leaves of A either
15 an isolated closed geodesic and hence a minimal component, or it spirals about one
or two minimal components ([CEG87], [Ota96]).

A geodesic lamination X is maximal if all its complementary components are ideal
iriangles or once punctured monogons. A geodesic lamination is called complete if it
is maximal and can be approximated in the Hausdorff topology by simple closed geo-
desics. Every minimal geodesic lamination is a sublamination of a complete geodesic
lamination [HamO04|. The space CL of complete geodesic laminations on § equipped
with the Hausdorff topology is compact.

A geodesic lamination or a train track A is carried by a transversely recurrent train
track T if there is a map F : § — S of class C! which is homotopic to the identity and
maps A to T in such a way that the restriction of its differential dF to every tangent
line of A is non-singular. Note that this makes sense since a train track has a tangent
line everywhere. A train track 1 is called complete if it is generic and transversely
recurrent and if it carries a complete geodesic lamination [Ham04].

A half-branch b in a generic train track T incident on a switch v is called large if
cvery arc p : (—€,€) — 1T of class C! which passes through v meets the interior of .
A branch b in 1 is called /arge if each of its two half-branches is large; in this case #
is necessarily incident on two distinct switches, and it is large at both of them (for all
this, see [PH92]).



There is a simple way to modify a complete train track T to another complete train
track. Namely, if e is a large branch of T then we can perform a right or left split of
T at e as shown in Figure 1 below. The split T’ of a train track 1 is carried by 1. If %
is complete and if A € CL is carried by T, then for every large branch e of < there ig
a unique choice of a right or left split of T at e with the property that the split track %/
carries A, and T’ is complete. In particular, a complete train track T can always be split-
at any large branch e to a complete train track T'; however there may be a choice of a.
right or left split at e such that the resulting track is not complete any more (compare
p-120 in [PH92]). '

right split

left split
Figure 1

Let TT be the set of all isotopy classes of complete train tracks on S. We connect |
two train tracks 7,7 with a directed edge if T can be obtained from T by a single split at -
alarge branch e. This provides 7T with the structure of a locally finite directed metric |
graph. The mapping class group My, of all isotopy classes of orientation preserving
homeomorphisms of S acts naturally on 7T as a group of simplicial isometries. The
following result is shown in [Ham04]. ':'

Theorem 2.1. The train track complex TT is connected, and the action of the map-
ping class group on T'T is proper and cocompact. '

A transverse measure on a train track T is a nonnegative weight function u on the ‘
branches of T satisfying the switch condition: For every switch s of 1, the sum of the i
weights over all incoming branches at s is required to coincide with the sum of the *
weights over all outgoing branches at s. The set V(1) of all transverse measures on T f
is a closed convex cone in a linear space and hence topologically it is a closed cell. -
The train track is called recurrent if it admits a transverse measure which is positive .
on every branch. We call such a transverse measure u positive, and we write u > 0. A -
complete train track T is recurrent [Ham04]. :

A transverse measure g on T is called a vertex cycle [MM99] if u spans an extreme
ray in V(t). Up to scaling, every vertex cycle u is a counting measure of a simple '
closed curve ¢ which is carried by . This means that for a carrying map F : ¢ — tand -
every open branch b of 1 the y-weight of T equals the number of connected components °



ol I '(h). More gencrally, every integral transverse measure u for T defines uniquely
a simple weighted geodesic multicurve, i.e there are simple closed pairwise disjoint
peadesics ¢p,. .., ¢p and a carrying map F : Ujc; — T such that y = Y a;v; where g; > 0
i~ i1 positive integer and where v; is the counting measure for ¢;. We have.

l.emma 2.2. Let ¢ be a simple closed curve which is carried by T, with carrying map
" : ¢ — 1. Then ¢ defines a vertex cycle on T only if F (c) passes through every branch
of T at most twice, with different orientation.

Proof. Let F : ¢ — T be a carrying map for a simple closed curve ¢ : S — § which
defines a vertex cycle y for 7. Assume to the contrary that there is a branch b of ©
with the property that F¢ passes through b twice in the same direction. Then there
15 a closed nontrivial subarc [p,q] C §! with nontrivial complement such that F o
¢|p.q] and F oclq, p] are closed (not necessarily simple) curves on 1. For a branch
¢ of T define v(e) to be the number of components of (F oc[p,q]) '(¢). Then v is
a nontrivial nonnegative integral weight function on the branches of T which clearly
satisfies the switch condition, and the same is true for y —v. As a consequence, the
transverse measurc u can be decomposed into a nontrivial sum of integral transverse
mcasures which contradicts our assumption that u is a vertex cycle for . This proves
(he lemma. O

In the sequel we mean by a vertex cycle of a complete train track T an integral
transverse measure on T which is the counting measure of a simple closed curve ¢ on
S carried by T and which spans an extreme ray of V(1); we also use the notion vertex
cycle for the simple closed curve c. As a consequence of Lemma 2.2 and the fact that
the number of branches of a complete train track on S only depends on the topological
tlype of S, the number of vertex cycles for a complete train track on § is bounded by a
universal constant (see [MM99]).

Recall that the intersection number i(Y,) between two simple closed geodesics
v, equals the minimal number of intersection points between representatives of the
free homotopy classes of 7, 8. This intersection number extends bilinearly to a pairing
for weighted simple geodesic muliticurves on S. The following corollary is immediate
from Lemma 2.2. For its formulation, for a transverse measure y on a train track
T denote by u(t) the total mass of p, ie. u(t) = Y, u(b) where b runs through the
branches of T. We have.

Corollary 2.3. Let u € V(1) be an integral transverse measure on T which defines the
weighted simple geodesic multicurve c. Let & be any vertex cycle of 1; then i(c,E) <

2u(T).

Proof. Let c be any simple closed curve which is carried by the complete train track
T and denote by u the counting measure on T defined by c. Write n = u(1); then there
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is a trainpath of length n, i.e. a C'-immersion p : '0,n] — T which maps cach interval,
[i,i+ 1] onto a branch of T and which parametrizes the image of ¢ under a carrying map,
¢ — 7. We then can deform p with a smooth homotopy to a closed curve p’ : [0,n] — §
which is mapped to p by a carrying map and is such that for each i < n, p'ji,i + l}
intersects t-in at most one point contained in the interior of the branch pli,i + 1].

Now let £ be any vertex cycle of T. By Lemma 2.2, & can be parametrized as &
trainpath 6 : [0, 5] — T which passes through every branch of T at most twice. Then the
number of intersection points between ¢ and p’ is not bigger than 2n = 2u(7). This:
shows the corollary for simple closed curves ¢ which are carried by 1. The case of 8
general weighted simple geodesic multicurve carried by t then follows from linearity-.._-f
of counting measures and the intersection form. o,

4

Since the distance in C(S) between two simple closed curves g, ¢ is bounded from'-L
above by 2i(a,c) + 1 IMM99], we obtain from Lemma 2.2 and Corollary 2.3 the ex-
istence of a number D > 0 with the property that for every train track 1 € 7T, the‘
distance in C(S) between any two vertex cycles of 7 is at most D. ;

Define a map ®: 7T — C(S) by assigning to a train track T € I T a vertex cycle ,
(1) for T. Every such map is roughly M n,-equivariant. Namely, for y € M, , and:’

T € IT, the distance between ®(y(t)) and y(P(t)) is at most D. Denote by d both
the distance on 7T and on C(S). We have. :

Corollary 2.4. There is a number C > 0 such that d(®(t),P(n)) < Cd(1,m) for all
T,MeTIT.

Proof. Let a.: [0,m] — T'T be any (simplicial) geodesic. Then for each i, either the
train track a.(i + 1) is obtained from o.(i) by a single split or o(i) is obtained from ou(i+ :
1) by a single split. Assume that o(i -+ 1) is obtained from a(i) by a single split. Then
there is a natural carrying map F : a(i+ 1) — o(i). By l.emma 2.2 and the definition
of a split, via this carrying map the counting measure of a vertex cycle ¢ on a(i +1)

defines an integral transverse measure on o.(i) whose total mass is bounded from above :
by a universal constant. Thus by Corollary 2.3, the intersection number between ¢ and :
any vertex cycle of a(i) is bounded from above by a universal constant. Then the
distance in C(S) between ¢ and any vertex cycle on (i) is uniformly bounded as well |
[MM99]. This shows the corollary. o

Define a splitting sequence in TT to be a (simplicial) map o : [0,m] — TT with
the property that for each i the train track (i + 1) can be obtained from a(i) by a
single split.

We use now a construction of Bowditch [Bow02]. Recall the definition of the
intersection form i on simple geodesic multicurves. For simple geodesic multicurves
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i on Swithi(o,B) -O0anda - 0,r .~ 0detine

Lo(@,B,r) = {y€ C(5) | max{ai(y, ), i(y, B)/ai(e0, B)} < r}.

Our next goal is to link the sets L, (o1, B, r) to splitting sequences. For this recall that
u puants decomposition of S is a collection of 3g — 3 + m pairwise disjoint mutually
not [reely homotopic simple closed essential curves on S, i.e. these curves are not
contractible and not freely homotopic into a puncture. Let P = {Y1,...,Y3-31m} be a
pints decomposition for S. Then there is a special family of complete train tracks with
the property that for a train track 1 in this family, each pants curve 7y; admits a closed
neighborhood A diffeomorphic to an annulus and such that tN A is diffeomorphic to a
viandard twist connector depicted in Figure 2. Such a train track clearly carries each
jsnts curve from the pants decomposition P; we call it adapted to P (see [PH92)). The
et of train tracks adapted to a pants decomposition os § is invariant under the action
ol ngm We show.

] [
L

l.emma 2.5. There is a number k > 1 with the following property. Let t©9 € IT be
udapted to a pants decomposition P of S, let (T;)o<i<m C I T be a splitting sequence is-
siting from Ty and let o, be a simple multicurve consisting of vertex cycles for T,. Then
there is a monotonous surjective function K : (0,00) —» {0,...,m} such that ¥(s) =0
fur all sufficiently small s > 0,K(s) = m for all sufficiently large s > 0 and that for all
v C (0,00) there is a vertex cycle of Ty which is contained in Ly(at, P, k).

Figure 2

Proof. Let P be a pants decomposition for S and let B be an arbitrary simple multic-
urve on S. Let k > 1 and assume that there is a curve Y € C(S) with the property that
0<c =i(PY)i(y,B) < ki(P,B). Writc b= i(P,)/i(P,B),a = i(x; B)/c; then abi(P,B) =
1 and max{ai(P,Y),bi(B,y)} < k. As a consequence, we have Y€ L,(P,B, k). Thus for
the proof of our lemma we only have to show the existence of a number k£ > 0 with the
following property. Let { be a train track which is adapted to a pants decomposition
P ={v1,...,V35-31m} and let C : [0,m] — T'T be a splitting sequence issuing from
£(0) == . Let j > 0 be such that the distance in C(S) between every vertex cycle of
(/) and every vertex cycle of {(0) is at least 3. Let p be a vertex cycle for {(m); then
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there is'a vertex cycle o j) for {(j) such that

3g—3+m 3g-3+m

o) Y o)<k L o) b

i=1 .

Since {(0) is adapted to the pants decomposition P, every pants curve of P is &
vertex cycle for £(0). Moreover, for each i < 3g — 3+ m there is a branch b; of C(O)
contained in an annulus A; about 7; and such that the counting measure v; for ¥; 1l
the unique vertex cycle of {(0) which gives positive mass to b;. Thus the counting
measure p of any simple closed curve ¢ which is carried by {(0) can be decomposed’
in a unique way as u = o + 233 3+m i where n; > 0 and where g is an integral
transverse measure for {(0) with po(b;) = 0 for all i. The intersection number of':
the curve ¢ with a pants curve ¥; equals the pg-weight of the large branch ¢; of C(O)f-,
containcd in the annulus A;. In particular, the intersection number of ¢ and ; coincideiﬁ
with the intersection number of y; and the simple weighted multicurve cq defined by.
the transverse measure . Moreover, since the complement of P in S does not contain:
any essential closed curve which is not homotopic into a boundary component or &
cusp, there is a constant kp only depending on the topological type of S with the!

property that

3g—3+m 3g—3+m

1o(5(0)) > ); iley)=Y, ilco.%) > po(%(0))/ko. 2.2)

i=l

Consider again the splitting sequence { : [0,m] — TT and let j < m be such that
the distance in C(S) between every vertex cycle of {(j) and every vertex cycle of {(0)
is at least 3. Let p be a vertex cycle for the train track {(m). Since {(m) is carried by
€(}), the curve p defines a counting measure 1 on {(j). This counting measure can:
(perhaps non-uniquely) be written in the form n = Z;’zl a;i&; where &; (i=1,...,d)
are the vertex cycles of {(j) and ¢; > 0 are nonnegative integers. The number d of
these vertex cycles is bounded from above by a universal constant and by Lemma 2.2,
the total mass of each of these vertex cycles &; is bounded from above by a universal
constant as well. Therefore, there is a universal number g > 0 and there is some i < d
such that a; > 1(£(J))/q. After reordering we may assume that i = 1. Write £ =&;

Corollary 2.3 shows that i(p,£) < 2n(E()) < 2qa;.

On the other hand, by our assumption on {( ) the distance in C(S) between & and
each of the curves 7; is at least 3. Thus & is mapped via the carrying map {(j) — £(0)
to a curve in {(0) which together with each of the pants curves of P fills up S. Then
€ defincs a counting measure y on {(0), and we have y = g + Z”g 34m
pi > 0 with up # 0. By inequality (2.2), the sum of the intersection numbers between
€ and the curves 7; is contained in the interval [up({(0))/ko,u0(L(0))]. On the other

piV; for some
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fnd, by the choice of & and the fuct that the carrying map §(j) -+ (0) maps the
vonvex cone V(E()) of transverse measures on §( ) linearly into the convex cone of
lumsverse measures on L(0), the counting measure for our curve p viewed as a curve
which is carried by {(0) is of the form a;u+4/; in particular, we have

Y. i(p,¥:) = ano(§(0)) /ko = M(E(1))ro(§(0))/gko > i(p,E)uo(8(0)) /2gko.  (2.3)
As u consequence of inequalities (2.2), (2.3) we have

i(p,&) Y i(8,%) < 2ko ) i(p,Vs). (24)

This completes the proof of the lemma. O

For any metric space (X,d) and any L > 1, a curve 7: (a,b) -— X is called an
1. quasigeodesic if for all a < s <t < b we have

d(¥(s),¥(t))/L— L <t —s < Ld(¥(s),¥(1)) + L.

Since C(S) is a d-hyperbolic geodesic metric space for some & > 0, every L-
uasigeodesic of finite length is contained in a uniformly bounded neighborhood of a
peodesic in C(S). Call a path y: [0,m] — C(S) an unparametrized L-quasigeodesic
il there is some s > 0 and a homeomorphism 6 : [0,s] — [0,m] such that the path
Yoo :[0,s] — C(S) is an L-quasigeodesic. The image of every unparametrized L-
yuasigeodesic in C(S) of finite length is contained in a uniformly bounded neighbor-
hood of a geodesic.

The following corollary is the key step toward the investigation of the Gromoy
houndary of C(S). It was first shown by Masur and Minsky [MMO04], with a different
proof.

Corollary 2.6. There is a number Q > 0 such that the image under ® of every splitting
sequence in TT is an unparametrized Q-quasigeodesic.

Proof. Recall the definition of the sets L,(ct, B, 7) for o, B € C(S). Bowditch [Bow02]
showed that there is a number ry > 0 with the following property. Assume that o, B €
C(S) fill up S, i.e. the distance d(0o., 3) between o. and f in C(S) is at least 3; then we
have.

(i) Ly(o,B,rg) # 0 foralla > 0.

(ii) For every r > 0, a > 0 the diameter of L,(x,B,r) is bounded from above by a
universal constant only depending on r.
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(iii) For r > ry there is a constant ¢(r) > 0 with the following property. Fora >0

choose some Y(a) € Lq(a,B,r); then y: (0,00) — C(S) is an unparametrized
g(r)-quasigeodesic with d(y(s),o) < g(r) for all sufficiently large s > 0 and .

d(y(s),B) < ¢(r) for all sufficiently small s > 0.
Let again a, B € C(S) be such that o, B fill up S. For r > ry define

L(o,B,r) = UzLy (0, B, r).

By property (iii) above and hyperbolicity of the complex of curves, there is a number
D(r) > 0 only depending on r such that L(c, B, 7) is contained in a tubular neighbor-

hood of radius D(r) about a geodesic connecting o to f3.

Now let P be any pants decomposition for S containing the curve o and assume
that y € L,(P,B,r) for some r > 0. Let o be a pants curve of P so that i(a/,p) =
max{i(v,B) | v € P}; then we have Y€ L,(o',B,(3g —3+m)r). As a consequence °
of this, hyperbolicity of C(S) and Lemma 2.5, the image under ® of the splitting .
sequence £, connecting a train track {(0) adapted to P to a train track {(m) which
carries B as a vertex cycle, is contained in a uniformly bounded neighborhood of any ;

geodesic in C(S) connecting o to B. Since this consideration applies to every splitting

sequence, "backtracking” of the assignment j — ®({(j)) is excluded. From this the -
lemma is immediate. a

Remark 2.7. More generally, the proof of Corollary 2.6 also shows the following.
Let £,n € TT and assume that 1 is carried by {. Let ¢ be any simple closed curve
which is carried by n; then ®(1) is contained in a uniformly bounded neighborhood
of a geodesic arc in C(S) connecting ®(L) to c.

3. Proof of the theorem

Fix again a complete hyperbolic metric on S of finite volume. Recall that a measured '

geodesic lamination on § is a geodesic lamination equipped with a transverse trans- -
lation invariant measure. As in the introduction we equip the space ML of measured -

geodesic laminations with the restriction of the weak*-topology. The Dirac mass on
any simple closed geodesic ¢ on S defines a measured geodesic lamination. The inter-
section of weighted simple geodesic multicurves extends to a continuous symmetric
bilinear form i on ML which is called the intersection form. The support of a mea-
sured geodesic lamination yu for S is minimal and fills up S if and only if i(u,v) > 0 for
every measured geodesic lamination v on § whose support does not coincide with the
support of u. The space PM L of projective measured laminations on § is the quotient
of M L under the natural action of the multiplicative group (0,ec); it is homeomor-
phic to a sphere of dimension 6g — 6 +2m — 1 [FLP79], in particular, it is compact.



Train tracks and the Cromov houndary of the complex of curves  1yv

The complex of curves naturally embeds into PML by assigning to a simple closed
peodesic its projectivized transverse Dirac mass.

Projective measured geodesic laminations can be used to study infinite sequences
i the complex of curves. Denote again by d the distance on C(S). We have the
{ollowing. ",,‘ g

Lemma 3.1. Let (¢;) C C(S) be a sequence which converges in PM L to a projective
measured lamination whose support Ay is minimal and fills up S. Let k > 0 and as-
sume that a; € C(S) is such that d(a;,c;) < k; then up to passing to a subsequence,
the sequence (a;) converges in PML to a projective measured geodesic lamination
supported in Ay,

P'roof. We use an argument of Luo as explained in the proof of Proposition 4.6 of
[MM99]. Namely, choose a continuous section 1 : PML — ML — {0} of the pro-
jection ML — {0} — PML. Then every simple closed geodesic ¢ on S defines a
mcasured geodesic lamination é € W(PML). Let (¢;) C C(S) be a sequence of simple
closed geodesics. Assume that the sequence (&;) converges in L{(PM L) to a measured
peodesic lamination vy whose support Ag is minimal and fills up S.

Let (a;) C C(S) be a sequence with d{a;,¢;) < k for a fixed number £ > 0. By
passing to a subsequence we may assume that d{c;, a;) is independent of i, i.e. we may
assume that d(c;,a;) = k for all i. Then for each i there is a curve ¢} € C(S) which
is disjoint from c; and such that d(c},a;) = k— 1. Up to passing to a subsequence,
the sequence (&}) C 1(PML) converges weakly to a measured geodesic lamination
Vi € (PML). Since i(¢!,¢;) = 0 for all i, by continuity of the intersection form we
have i(vg,vi) = 0 and therefore v is supported in Ag. Proceeding inductively we
conclude that up to passing to a subsequence, the mcasured laminations ; defined by
the curves a; converge in 1(PM L) to a measured lamination which is supported in Ag.
‘This shows the lemma. O

Consider again the train track complex 7T, For t € 7T denote by A(1) C CL the
set of all complete geodesic laminations carried by T. Then A(7) is open and closed
in CL. Following [Ham04], define a fill splitting sequence in TT to be a sequence
o : [0,00) — TT with the property that for every i > 0, the train track a(i+ 1) is
obtained by splitting o(¢) at each of the large branches precisely once. If t€ T T is
arbitrary and if A € CL is a complete geodesic lamination which is carried by 1, then
A determines uniquely a full splitting sequence L), issuing from T by requiring that
cach of the train tracks o), (i) carries A, and M;A (0t (i) = {A} [Ham04]. Recall the
definition of the map @ : 7T — C(S). By Corollary 2.6, there is a universal number
Q > 0 such that the curve i -» ®(a; 5 (i) is an unparametrized Q-quasigeodesic in
C(S). This means that this curve defines a quasiisometric embedding of the half-line
[0,00) into C(S) if and only if the diameter in C(S) of the set ®(a; 3 [0,0)) is infinite.
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Let B be the set of all minimal geodesic laminations on S which fill up S, equipped
with the coarse Hausdorff topology. Recall that B is a Hausdortf space. The next.
statement is immediate from Lemma 3.1. :

Corollary 3.2. Let ). € CL be a complete geodesic lamination which contains a sub»_
lamination Ay € B. Let © € TT be a train track which carries ); then the diameter of -
the set ®(01;,[0,20)) C C(S) is infinite.

Proof. Let A € CL be a complete geodesic lamination which contains a sublamination

Ao € B. Assume that A is carried by a train track T € T7. Denote by o, = diy, the-
full splitting sequence issuing from T which is detcrmined by A. We have to show that -
the diameter of the set ®(at [0,0)) is infinite. For this recall that N;A(0p (7)) = {A}. .
Since for each i the curve ®(ay (i) is carried by oy (7), the curves ®(oy (i) viewed:
as projective measured laminations converge up to passing to a subsequence as i —
e in PML to a projective measured geodesic lamination which is supported in Ag. "
Thus by Lemma 3.1, there is no curve a ¢ C(S) with d(P(0 (i)),a) < k for a fixed.
number £ > 0 and all i and hence the diameter in C(S) of the set ®(0 [0, =0)) is indeed

infinite. O

As in the introduction, we call a sequence (¢;) C C(S) admissible if fora fixed p €
C(S) wehave (ci,cj)p — oo (i, j - > o). Two admissible sequences (a;), (¢;) C C(S) are
equivalent if (a;,¢;), — oo(i — o). The Gromov boundary dC(S) of C(S) is the set of
equivalence classes of admissible sequences in C(S). Note that any quasigeodesic ray
in C(S) defines an admissible sequence. We use Corollary 3.2 to show the following.

Lemma 3.3. There is an injective map A : B — 3aC(S).

Proof. Fix a pants decomposition P of S. Then there is a finite collection i, ...,T, C
TIT of train tracks adapted to P with the property that every complete geodesic lami-
nation A € CL is carried by one of the tracks T; (see [PH92], [Ham04]). Let 4 C CL
be the set of all complete geodesic laminations which contain a sublamination A9 € B.
For A € 4 let t; be a train track from our collection 1y, ...,T, which carries A and let
0y, : [0,0) — TT be the full splitting sequence issuing from t; which is determined
by A. By Corollary 2.6 and Corollary 3.2, there is a universal number Q > 0 with the
property that the curve i — ®(ay (¢)) is an unparametrized Q-quasigeodesic of infinite
diameter. Hence this curve defines a point A(A) € 9C(S).

There is a natural continuous projection T : 4 — B which maps a lamination A € 4
to its unique minimal sublamination 7(A) € B. We claim that A(A) = A(u) for A, u € 4
if m(A) = n(u) = Ao. For this extend the map @ to the collection of all recurrent train
tracks on S by assigning to such a train track ¢ a vertex cycle ®(c) of 6. Since the
minimal sublamination A9 = (L) of A fills up § and is carried by each of the train
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nacks oy (i), the image of Ay under a carrying map A — oy (i) is a recurrent subtrack
(1, (1) of &y (i) which is large. This mecans that 6; (i) is a train track on S which is
i subset of a (i) and whose complementary components do not contain an essential
situple closed curve which is not homotopic into a puncture. By Lemma 2.2 and
Corollary 2.3, the distance in C(S) between (o (i)) and ®(6 (i) is bounded by a
umiversal constant,

Up to isotopy, the train tracks & (i) converge as i — oo in the Hausdorfl topology
{0 the lamination Ag (see [Mos],iHam04]). Since Ag is a sublamination of g, for every
t - () there is a number j(i) > O such that the train track 6 (j(7)) is carried by (i)
tvwe [HamO4]). By the remark following the proof of Corollary 2.6, this implies that
h{x,(£)) is contained in a uniformly bounded neighborhood of ®(0[0,)). Sincc
¢ - 0 was arbitrary, the Hausdorff distance between the Q-quasigeodesics in C(S)
detined by A, is bounded and hence we have A(A) = A(y) as claimed. Thus there is
wmap A: B — 9C(S) such that A = Aom.

We claim that the map A is injective. For this let Ap # yg € ‘B and let A €
1 '"(Ao) C A,u € "(up) C A. By Corollary 2.6 and Corollary 3.2, the image un-
der @ of full splitting sequences ay, o, ¢ 77T determined by A, i are unparametrized
() quasigeodesics in C(S) of infinite diameter. Thus by the definition of A, we have
Atho) = A(up) only if the Hausdorff distance between ®(ai [0,00)) and ®(a,[0,0))
5 finite,

Assume to the contrary that this is the case. Then there is a number D > 0 and for
cvery i > 0 there is a number j(i) > 0 such that d(P(0 (i), P(a,(j(i))) < D. Since
d(D(a (0)),®(ai (i))) — oo we have j(i) — oo (i — o) by Corollary 2.4. Therefore,
up to passing to a subsequence, the curves @0 (1)), ®(o,(j(i))) viewed as projective
mcasured geodcesic laminations converge as { — oo to projective measured geodesic
laminations vg, vy supported in Ag, ug. But Ag,uo fill up S and do not coincide and
lience this contradicts Lemma 3.1. 1

The Gromov boundary dC(S) of C(S) admits a natural Hausdorff topology which
can be described as follows. Extend the Gromov product (, ), to a product on 0C(S)
by defining (§,(), = SUP|;,) (y;) liminf; j—w{(¥i,¥;)p where the supremum is taken over
all admissible sequences representing the points &, . We have (€, (), = o if and only
i =¢e€dC(S). A subset U of dC(S) is a neighborhood of a point & € dC(S) if and
only if there is a number € > 0 such that {{ € 9C(S) | e=&%» < €} C U (comparc
IBH99)).

We say that a sequence (¢;) C C(S) converges in the coarse Hausdorff topology to
a lamination p € B if every accumulation point of (c;) with respect to the Hausdorff
iopology contains g as a sublamination. The next lemma completes the proof of our
theorem from the introduction.
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Lemma 34. "

(i) The map A : B — 0C(S) is a homeomorphism.

(ii) For pu € B, a sequence (¢;) C C(S) is admissible and defines the point Au) é
0C(S) if and only if ¢; — u in the coarse Hausdorff topology.

Proof. We show first the following. Let (¢;) C C(S) be an admissible sequence, i.e. ﬂ

sequence with the property that (¢;,c;j), — oo (i, j — ). Then there is some A € G

such that (¢;) converges in the coarse Hausdorff topology to Ag. Y

For this we first claim that there is a number & > 0 and an admissible sequencq"lf:
(aj) C C(S) which is equivalent to (c;) (i.e. which satisfies (a;,¢;), — ) and sucli;
that the assignment j — a; is a b-quasigeodesic in C(S). j

Namely, let j >0 and choose a number n(j) > j such that (cg,c,), > jforall £,n 2;:

n(j). By hyperbolicity, this means that there is a point a; € C(S) with d(p,a;) > ﬁ
and the property that for n > n(j), every geodesic connecting ¢, to p passes through a
neighborhood of the point a; of uniformly bounded diameter not depending on j. By
construction, the sequence (a;) C C(S) is contained in a b-quasigeodesic for a number_',
b > 0 only depending on the hyperbolicity constant, and this quasigeodesic deﬁne$§
the same cquivalence class as the sequence (c;). As a consequence, we may assume;
without loss of generality that (c;) is a uniform quasigeodesic. By the considerations%
in Section 2 we may moreover assume that there is a splitting sequence (7;) j>0 C T T;
and a strictly increasing function 6 : N — N such that ¢; = ®(tq(;)) where @ : TT —>£
C(S) assigns to a train track T a vertex cycle for T.

By Lemma 2.5 there is a number k > 0 with the property that for all 0 <i < j there3
is a vertex cycle a;,; € C(S) for T4(;) such that

i(co,a; j)i(ai j,c;) < ki(co,cj) forO<i<j. (3.1

Note that this inequality is invariant under multiplication of the simple closed curve :
¢; with an arbitrary positive weight. Let again1: PML — ML — {0} be a continuous -
section and for j > 0let &; € L(PM L) be a multiple of ¢;. By passing to a subsequence
we may assume that the sequence (¢;) converges in the space of measured geodesic
laminations to a measured geodesic lamination p.

We claim that the support of y is a minimal geodesic lamination which fills up S. ;
For this we argue by contradiction and we assume otherwise. Then there is a sim- .
ple closed curve ¢ on S with i(c,u) = 0 (it is possible that the curve c is a minimal "
component of the support of u). Replace the quasigeodesic (c;) by an equivalent qua- |
sigeodesic, again denoted by (c;), which issues from ¢ = ¢g and which eventually
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vomeides with the original quasigeodesic. Such a quasigeodesic exists by hyperbol-
ity o C(S). Since the number ol vertex cycles for a fixed train track is bounded
liom above by a universal constant, after passing to a subsequence and using a stan-
duid diagonal argument we may assume that the curve g; ; is independent of j > i; we
ilenote this curve by a;. Inequality (3.1) and continuity of the intersection form then
tmplies that i(c,a;)i(a;,é;) < koi(c,pr) = 0 for all i > 0. Since d(c,a;) > d(c,c;) — ko
fon all i, for i > ko + 2 the intersection numbers i(c,a;) are bounded from below by a
universal constant and therefore i(a;,u) = 0 for all i > 0. If the support of u contains a
stiple closed curve component a, then this just means that the set {a; | i >0} C C(S)
i~ contained in the kg + 1-neighborhood of a which is impossible. Otherwise u has
« minimal component gy which fills a nontrivial bordered subsurface Sp of §, and
1y, a) > 0O for every simple closed curve a in § which is contained in Sy and which is
nt [reely homotopic into a boundary component or a cusp. Since i(a;,u) = 0 by as-
wnmption, the curves a; do not have an essential intersection with Sy which means that
i{u;,a) = Q for every simple closed essential curve a in Sp. Again we deduce that the
wi {a; 1§ >0} C C(S) is bounded. Together we obtain a contradiction which implies
that indeed the support of u is a minimal geodesic lamination Ay € B which fills up S.

Let A; be a complete geodesic lamination which contains ¢; as a minimal compo-
nent. By passing to a subsequence we may assume that the laminations A; converge in
the Hausdorff topology to a complete geodesic lamination A. Since the measured lam-
mations ¢; converge in the weak*-topology to u, the lamination A necessarily contains
Ay as a sublamination.

Let o, be a full splitting sequence determined by A. For every i > 0 the set of
complete geodesic laminations which are carried by o (7) is an open neighborhood of
Ain CL. Thus for every i > 0 there is a number j(i) > 0 with the property that for every
i > j(i) the geodesic c; is carried by o (i). From the remark following Corollary 2.6
we conclude that ®(ay () is contained in a uniformly bounded neighborhood of any
peodesic connecting c; to ®(a (0)). As a consequence, the image under & of the
full splitting scquence oy, defines the same point in the Gromov boundary of C(S) as
(¢;). In other words, the point in dC(S) defined by (c;) equals A(Ag) and the map
A is surjective. Hence by Lemma 3.3, the map A is a bijection. Moreover, if (¢;) C
('(S) is any admissible sequence and if (c;;) is any subsequence with the property that
(he curves ¢;; converge in the Hausdorff topology to a geodesic lamination A, then
A contains a lamination A9 € B as a minimal component, and (c;) defines the point
A(Ag) € 0C(S). In particular, for every admissible sequence (¢;) C C(S) the curves
(¢;) converge in the coarsc Hausdorff topology to the lamination Ag = A™!((c;)) € B.
‘This shows our above claim.

Let again £ be the space of all geodesic laminations on S equipped with the Haus-
dorff topology. Let 4 C L be the set of all laminations containing a minimal sublam-
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ination which fills up S. Let again ®: 4 — ‘B be the projection which associates to §
lamination A € 4 its unique minimal component. Let Ao € Band let L=7""'( o) C &
be the set of all geodesic laminations which contain A as a sublamination. Since Mg
fills up S, the sct L is finite. We call a subset V of C(S)U B a neighborhood of \y
in the coarse Hausdorff topology of C(S)U B if there is a neighborhood W of L in £
such that V > (WN C(S)) Un(W N A). :

For & € 9C(S) and ¢ € C(S) write (¢,§), = sup(y) liminf; ..(c,x;)p, where the
supremum is taken over all admissible sequences (x;) defining £. A subset U of C(S)U
0C(S) is called a neighborhood of & € dC(S) if there is some € > 0 such that U contain§
the set {{ € C(S)UIC(S) | =&Y < g}. In the scquel we identify B and AC(S) with
the bijection A. In other words, we view a point in dC(S) as a minimal geodesi§
lamination which fills up S, i.e. we suppress the map A in our notation. To complet-:e:
the proof of our lemma it is now enough to show the following. A subset U of C(S) &
dC(8) is a neighborhood of A9 € B = d(S) if and only if U is a neighborhood of Ma

in the coarse Hausdorff topology. ;:

For this let A9 € B, let L=7 '(Ao) C 4 be the collection of all geodesic lammaa
tions containing A as a sublamination and let p = @(7) for a train track 1€ TT whlclg
carries each of the laminations A € L (see [Ham04] for the existence of such a traq}.
track 7). Let€ > 0 and let U = {{ € C(S)UAC(S) | e Po0r < €}. Let My,..., A, C L
be the collection of all complete geodesic laminations contained in L and for i < s'.
let a; be the full splitting sequence issuing from 0;(0) = T which is determined by
A;. By hyperbolicity and the remark after Corollary 2.6, there is a universal con«i‘
stant % > 0 with the property that for each i < s, j > 0 every geodesic connecting]
p to a curve ¢ € C(S) which is carried by o;(j) passes through the %-neighborho 1
of ®(0;(j)). Since ®(a;) is an unparametrized quasigeodesic which represents the"
point Ag € dC(S), this implies that for every € > 0 there is a number j > 0 such that}
e~ (el < gand e~ (#20)r < ¢ for all simple closed curves ¢ € C(S) and all laminations
p € B which are carried by one of the train tracks a;(j) (i =1,...,s). Since the seti
of all geodesic laminations which are carried by the train tracks o;(j) (i=1,...,s) is:
a neighborhood of L in £ with respect to the Hausdorff topology (sce [Ham04]), we®
conclude that a neighborhood of A9 in C(S) U C(S) is a neighborhood of Ag in the-
coarse Hausdor(f topology as well.

To show that a neighborhood of Ag € B in the coarse Hausdorff topology contains
a set of the form {{ € C(S)UAC(S) | e ®:Y)r < €} we argue by contradiction. Let
again L = 7! (Ag) C 4 be the collection of all geodesic laminations containing Ag
as a sublamination. Assume that there is an open neighborhood W C L of L in the
Hausdorff topology with the property that -{W N .4) U (W N C(S)) does not contain a
neighborhood of Ag in C(S)UIC(S). Let (¢;) C C(S) be a sequence which represents
Ao € B =09C(S). By our above consideration, every accumulation point of (¢;) C L
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with respect to the Hausdorll topology is contained in L. By our assumption, there
In it sequence i; — oo, a sequence (g;) C C(S) and a sequence R; -+ oo such that
{t,,,tj)p = R; and that a; ¢ W. By passing to a subscquence we may assume that
the curves a; converge in the Hausdorff topology to a lamination § ¢ W. However,
wnee (¢i;,a7)p —+ o, the sequence (a;) is admissible by assumption and equivalent to
{«,) and therefore by our above consideration, (a ,-) converges in the coarse Hausdorff
topology to Ag. Then aj € W for all sufficiently large j which is a contradiction. This
«hows our above claim and completes the proof of our lemma. O

Acknowledgement. I am grateful to the referee for pointing out the reference [MMO04]
iv me and for many other helpful suggestions.
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The pants complex has only one end

Howard Masur and Saul Schleimer!

I. Definitions and statement of the main theorem
T'he purpose of this note is to prove the following theorem:

Theorem 4.1. Let S be a closed, connected, orientable surface with genus g(S) > 3.
I'hen the pants complex of S has only one end. In fact, there are constants K = K(S)
und M = M(S) so that: if R > M, and P and Q are pants decompositions at distance
wreater than KR from a basepoint, then P and Q may be connected by a path which
remains at least distance R from the basepoint.

A pants decomposition of S consists of 3g(S) — 3 disjoint essential non-parallel
simple closed curves on S. Each component of the complement of the curves is a
three-holed sphere; a pants. Then the pants complex P(S) is the metric graph whose
vertices are pants decompositions of S, up to isotopy. Two vertices P, P’ are connected
by an edge of length one if P, P’ differ by an elementary move. In an elementary move
all curves of the pants are fixed except for one curve o.. Remove o and let V be the
component of the complement of the remaining curves which is not a pants. Then V
contains o and is cither a once-holed torus or a four-holed sphere. Now a is replaced
by any curve B contained in V that intersects o minimally; in the torus case once, and
in the sphere case twice. All edges of P(S) are assigned length 1. We let d(-,-) be the
distance function in P(S). The pants complex P(S) is known to be connected [HT80].

A path metric space (X,d) has one end if for any basepoint O € X and any radius
R the complement of Bg = Bg(0), the ball of radius R centered at O, has only one
unbounded component. It is easy to see that the definition does not depend on the
choice of the point O. Clearly having one end is a quasi-isometry invariant of path
metric spaces. So, following Brock [Bro03] (see also [Bro02]) and Wolpert [Wol871],
our theorem implies:

Corollary 1.1. Fix S a closed, connected, orientable surface with genus three or
higher. The Teichmiiller space of S, equipped with the Weil-Peterson metric, has only
one end.

I'This research is partially supported by NSF grant DMS0244472 (H. Masur) and was previously par-
tially supported by NSI° grant DMS0102069 (S. Schleimer).
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Finally, recall that the curve complex C(S) is the complex whose k-simplices cohé
sist of &+ 1 distinct isotopy classes of essential simple closed curves on S that hav§
disjoint representatives on S. Or, in the casc of a once-holed torus and four-hole‘
sphere, C(S) is the Farey graph. From the metric point of view we will only be intepe
ested in the 1-skeleton of C(S). Each edge is assigned length 1. We let ds(,-) denoti:
the distance function in C(S).

Acknowledgement We thank Yair Minsky for critiquing an earlier version of thﬁ
paper.

r
2. The set of handle curves is connected ks
Y
In this section we prove two combinatorial facts. First, the set of handle curves
the curve complex is connected and second, any pants decomposition is a boundej '

distance (in the pants complex) from a decomposition containing a handle curve.

DEATY

by

Floar

Again assume S is a closed, connected, orientable surface with genus three df
greater. We will call o a handle curve in S if o separates S into two surfaces: thii
once-holed torus S(at) and the rest of the surface.

Rl

R

We will need the following result. It was first proved by Farb and Ivanov [FI03] by
different methods. Another proof has been given by McCarthy and Vautaw [MVO3§
by methods similar to ours. We include a proof for completeness. :

Proposition 2.1. If g(S) > 3, the subcomplex H(S) C C(S) of handle curves is con
nected. '

Remark 2.2. Note that the hypothesis g(S) > 3 cannot be removed; it is easy to chec!
that #(S), when S has genus 2, is an infinite collection of points. '

Remark 2.3. Note that Proposition 2.1 immediately implies that the set of separating;
curves in C(S) is also connected.

Remark 2.4. Our proof of Proposition 2.1 generalizes to the case a5 7# 0. An inter-
esting open question is the higher connectivity of #(S).

k

Before we begin the proof we will require a bit of terminology. Let i(-,-) denote
the geometric intersection number of two essential simple closed curves in . Also, if:
3 is a scparating curve in § we say that an arc ' is a wave for 8 if f'N& =0f’ and p’
is essential as a properly embedded arc in S\.8. We say that two waves 8’ and B for
8 link if ' N B” == 0, both B’ and B” meet the same side of 3, and 0B’ separates 9f"
inside 8. Figure 1 shows a pair of linking waves.

Finally we define double surgery as follows. Suppose we are given a linking pair of |

waves B’ and B for an essential separating curve 8. Form the closed regular neighbor-
hood U = neigh(8U B UB"). Let & be the component of 90U which is not homotopic

|
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Figure 1: The dotted lines are f and B”.

I &. We say that § is obtained from 8 via double surgery along B’ and §”. Again, see
lupure 1 for a picture of 8, &', and U. Note that &' is necessarily a separating curve and
i~ disjoint from 8. Furthermore, the curves & and & cobound a two-holed torus. We
deduce that &' is also essential as long as the component of S~\.8 containing B’ JB" is
not o handle.

We are now equipped to prove the proposition:

I'roof of Proposition 2.1. Let o, € #(S) be handle curves and S a closed orientable
surface of genus at least three. Suppose that o and f are tight: o has been isotoped to
make |an B} = i(a, B). If i(a, B) = 0 then there is nothing to prove. If i(a,B) > 0 we
will find a curve v € H(S) with i(y,a) = 0 and i(y,B) < i{a, B). By induction, 7y will
he connected to B in #(S), proving the proposition.

We find 7 via the following inductive procedure. Recall that S(a) is the handle
which o bounds. To begin, we define 3y C S\.S(a) to be a parallel copy of a, still
mtersecting P tightly. At stage k by induction we will be given an essential separating
curve 8; where

. i(oc, Sk) =0,
« & is tight with respect to B, and

* l(skaB) < i(sk—laB)’ ifk>0.

l.et 7; be the component of .8 which does not contain o. If T} is a handle, then we
take y = & and we are done with the inductive procedure. If (3¢, B) = 0 then we may
tuke 7 to be any handle curve inside T;. As this v satisfies i(a,y) = i(B,y) = O finding
v would finish the proposition. From now on we assume that 7 is not a handle and
that i(8;,8) > 0.

We now attempt to do a double surgery of & into 7. Either we will find y directly
or the curve resulting from double surgery, & 1, will satisfy the induction hypothesis.
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As the geometric intersection with B is always decreasing, this procedure will slop
after finitely many steps yielding the desired handlc curve.

So all that remains is to do the double surgery. Suppose for the moment that
B',B" C BNT; are linking waves for 8. As described above we may form 84 vig
a double surgery along B’ and B”. Isotope 8, |, in the complement of &y, to be tlght
with respect to B. As noted in the definition of double surgery, ;.. is an essentlaf!._
separating curve which is disjoint from o. Finally note that i(8¢_,.B) < i(5¢, B) — 4
Thus all of the induction hypotheses are satisfied.

Suppose now that we cannot find linking waves among the arcs BN 7. Choose:j
instead an outermost wave B’ C BN T;: that is, there exists an arc 3, C J such thai
8, NP =093, = df’. See Figure 2.

RIS

Figure 2: The arc §/ is an outermost wave.

e At W i S et T R

Here there are two remaining cases. If 3 U’ is a separating curve take ;1 =
37, UP’ and note that the induction hypotheses are easily verified. The final posmb1hty§
is that 8), U’ is not separating. Sce Figure 3.

'\
§
¥
H
N

Figure 3: The curve ' U§; is nonseparating.

Since 3, U’ is not separating there exists a properly embedded essential arc B C
Ty such that B” NP = 0 and |p” N J}| = 1. Then P’ and B” link. Do a double surgery
along these waves to obtain 8;..;. Isotope 8,1, in the complement of &, to be tight
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with respect o B Again, all of the induction hypotheses are easily verified, as we
hve (8¢ 1, B) < i(8,B) 2. This completes the second induction step and hence
yvompletes the proof of Proposition 2.1. O

We also require

Lemma 2.5. There is a constant M = M(S) such that the pants decompositions con-
tuming a handle curve are M-dense in the space of all pants decompositions

Ioof. The mapping class group acts co-compactly on the space of pants decomposi-
flons. O

Y. Subsurface projections and distances

ere we set forth three lemmas studying the pants complex. The first is a slight
wlinement of an idea of Masur and Minsky [MMOO], the second gives a condition
lor a pants decomposition to lie outside of a large ball about the origin in P(S), and
(he third provides us with useful paths lying outside of such a ball.

Fix attention on a subsurface W ¢ S which has oW essential in S and which is not
an annulus or a pants (a three-holed sphere). Suppose that ¥ is an essential simple
closed curve in S which is not isotopic to a boundary component of dW. Suppose
lurther that v either lies in the interior of W or has non-zero geometric intersection
with OW. Isotope 7 to be tight with respect to dW.

We briefly define the subsurface projection Tw (y) (see [IMMO0] for a more through
discussion). If y C W then set nw (Y) = v. If not, then for every arc oo C yN'W take
every curve of d(neigh(ctU oW ))) which is not isotopic into dW. Let Ty (Y) be this set
ol curves and note that Ty (Y) C C(W) has diameter at most 2 ((MMO00] Lemma 2.3).

Similarly, given a pants decomposition P we may project cach curve of P into W.
We denote the resulting image my (P) C C(W). This again has diameter at most 2. By
(P, P") we mean the distance in the curve complex of W between the sets my (P)
and 7ty (P').

Let [x]¢c be the function on N giving zero if x < C and giving x if x > C. We
will need the following result from [MMOO] (see Theorem 6.12 and Section 8 of that
paper):

L.emma 3.1. There is a constant Co = Cy(S) > 1 such that for any D > Cy there are
constants M = A (D) > D and €, = €(D) > 0 with the following property: for any
pants decompositions P and P' we have

{;Z[dV(P,P')]D ey <d(PP) <MYl (BP)p+e,  G.D
"4 v



214  Masur & Schleimer

where the sums range over subsurfaces V C S with essential boundary and where V i
neither an annulus nor a pants. E

We have a final definition: Choose a basepoint O € P(S). Fix R > 0. A curW
o C §is R-distant from the basepoint O if, for any pants decomposition P conlamm‘
o, we have d(P,0) > R.

Fix now C > max{2,Co}. Leth =1 (C) > Cand €; =€;(C) >0 asin Lemma 313,

i

Lemma 3.2. Fix R > 1. Fix a handle curve o and some curve o' C S(a) satisfyi;j!;
ds(0)(0,0"") > M (R+€1) + 2. Then " is R-distant from O. ;

»."

Proof. Since Ay > C and R > 1 we have dg(q)(0, ") > C. Fix any pants decomposig
tion P containing 0. As Tg(y)(P) has diameter at most two we have ‘3.3;

ds(0)(P,0) > ds(q)(",0) ~2.
So, by the left inequality of Equation 3.1 we have

1 1 1 4
d(pP.0) > }Tl[ds((x)(P’ O)lc—& = x—]dsm) (P,O)—& > h—l(dsm)(a"ﬂ) -2)-& >

As the Farey graph for S(a) has infinite diameter, and as the diameter of ns(a)(dﬁ
is bounded, such curves o’ exist in abundance. We now turn to the existence of pathf'
lying outside of the R-ball about the basepoint. As a bit of notation let By = Bg(O) be
the ball of radius R centered at the basepoint O.

Note that it follows from Equation 3.1 that projections of size exactly C or C +
cannot account for the entire pants distance between P and P’. Namely there @
constants Ay = A, (C) > 1 and & = €,(C) > 0 such that

Ylav (P2 < Y ldv(PP)e <A ) [dv(P.P)c2+. (3.2;
v - 2

Choose K = K(C) > 0 so that for all R > 1,

2xix1 ((K -1)R- &1 — Mgz — 20k — MAT(R+€1)) > M(R+e1)  (3.3),

Lemma 3.3. Suppose Py is a pants decomposition of S such that Py ¢ B(x_1 g and Py
contains a curve o which bounds a handle S(0). Then there is a pants decomposition’
Py and a path {P;/,}}_ so that
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* Popn=Po. By I

* Py differs from P; ), by a single elementary move,
s for alli, Py|(S\S(ax)) = Pyjn|(S~S(00)),

- for alli, Py ¢ B

* The curve o == Py N S(a) is R-distant from O.

Proof. Let of € Py /n = Po be the curve contained in S(o). Consider a geodesic seg-
ment in the Farey graph connecting o' to B € mg()(0), where B is chosen as close as
pussible to of. Extend this segment through o to a geodesic ray L in the direction
upposite B. The ray I meets the segment only at o. Move along L distance more than
Ar(R-+€1)+2 from o to a point o”. Let P;/, be the path obtained by making elemen-
tary moves along the curves in L and fixing the pants in S\.S(ct). This path has all of
ihe desired properties except perhaps the fourth. (The fifth follows from Lemma 3.2).
It remains to show that P;, ¢ B(R).

There are two cases. Suppose first that dgq)(B,®') > A1(R+¢€1) +2. Then by
| emma 3.2 for any i the curve P;/, NS(a1) is R-distant. So P;/, ¢ B(R) and Lemma 3.3
holds in this case.

Next suppose that dg(q)(B,0') < A1(R+€1)+ 2. Then by Equation 3.1 and the
1ight hand side of Equation 3.2

(K—1)R < d(Py,0) < M Y [dv(Po,0)]c+€1 <
1%
< A2k ) [dv (Po,0)]cr2 + M2 +€1 <
|4

<M Y [dv(Po,O)lciz+2hah + MM (R+E1) + Mgz +€y.
V#S(a)

Let V be any subsurface disjoint from S(c). Since P;/, is constant in V, the pro-
jection Tty (P, ) is constant. Now let V be a subsurface that intersects S(at) or strictly
contains S(at). Since o € Py, it follows that 7y (P;/,) contains 7ty (). Since each
v (P;/,) has diameter at most 2, dy (P;/n, O) 2 dy (Po, O) —2. Thus for any subsurface
i" not isotopic to S(at), as C > 2, we have [dy (P, 0)]c > %[dv(Po,O)]C+2. Thus for
NIEA

N -

Y @v(Pm,O)lc>5 Y, ldv(Po,0)lc2 >
V#£S(ar) V#£S(o)
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2R e '-

2 22’2}‘1 (( - )R—El—l|£2—27\.27\.|—7\.2>\, (R"I'"i:l)) >M(R+€), ‘:

the last inequality following from Equation 3.3. So, by the left-hand side of Equlv
tion 3.1, for all i we have d(P,/,,0) > R. »

4, Proof of the theorem

Recall the statement: r

&

Theorem 4.1. Let S be a closed, connected, orientable surface with genus g(S) > 3,
Then the pants complex of S has only one end. In fact, there are constants K = K (S}
and M = M(S) so that, if R > M, any pants decompositions P and Q, at dlstanc‘
greater than KR from a basepoint, can be connected by a path which remains at lead
distance R from the basepoint.

& . 'I-;H.s‘i
B g

vsl.'.. -

Proof. We take M as defined in Section 2 and K as defined in Section 3.

#
Using Lemma 2.5 move P and @ a distance at most M < R to obtain pants deav
compositions Fy and Qp. The lemma gives handle curves op € Py, 0g € Qp. Alsc)r

Py, Qo ¢ Bik—_1)r- :;

Apply Lemma 3.3 twice in order to connect Py and Qp to pants decomposntlons P1
and Q, satisfying all of the conclusions of the lemma. Let oy € P; and oc € Q1 be

the R-distant curves lying in the handles § (op) and S(o1p) respectively.

227 Y
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We must now construct a path from Py to Q. Consider first the case where op At
Og.

Applying Proposition 2.1 we connect otp to 0 by a path of handle curves in | (S)
Label these {oc, " | where o = olp, 0, = Cig, and n > 1. Note that in this step the
hypothesis g(S) > 2 is used. Choose, for i € {2,3,...,n— 1} any R-distant curve'f
of C S(oy). This requires Lemma 3.2. Again, fori € {2, 3,...,n — 1}, extend the pau'*
o, 0 to a pants decomposition P,. Finally set P, = Q.

. TR

We connect P; to P,_; by a path where every pants decomposition in the first part
of the path contains 0; and ¢ and every pants decomposition in the rest of the path
contains 0;;1 and o, ;. (This is possible because P(S\.S(0;;))=P(S\S(0ti+1)) are
connected and because S(ay) is disjoint from S(¢;.1).) By Lemma 3.2, this path lies;
outside of the ball of radius R and we are done.

In the case which remains 0 = ap. Here there is no need for Proposition 2.1.
Instead we choose any handle curve B which is disjoint from oip. Note that [ exists as;
g(8) > 2. Using Lemma 3.2 choose a R-distant B C S(B) and extend this to a pants
decomposition P». Set P; = Q;. Connect P; to P> to P3 as in the previous paragraph.
This completes the proof. o
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The Weil-Petersson geometry of the five-times
punctured sphere

Javier Aramayona

Abstract

We give a new proof that the completion of the Weil-Petersson metric on
Teichmiiller space is Gromov-hyperbolic if the surface is a five-times punctured
sphere or a twice-punctured torus. Our methods make use of the synthetic geom-
etry of the Weil-Petersson metric.

1. Introduction

The large scale geometry of Teichmiiller space has been a very important tool in dif-
lerent aspects of the theory of hyperbolic 3-manifolds. Within this context, a natural
yuestion to ask is whether Teichmiiller space, with a given metric, is hyperbolic in the
sense of Gromov (or Gromov hyperbolic, for short). In general, the answer is negative.
In their paper [BF01], the authors prove the following: if ¥ is a surface of genus g and
with p punctures, with 3g —3 4+ p > 2, then the Teichmiiller space of X, endowed with
the Weil-Petersson metric, is not Gromov hyperbolic. In the case when3g—3+p =2
(that is, when the surface is a sphere with five punctures or a twice-punctured torus)
they show that the Weil-Petersson Teichmiiller space is Gromov hyperbolic. The
proof makes reference to very deep results by Masur and Minsky {MM99] on the Gro-
mov hyperbolicity of the curve complex. We remark that Behrstock [Beh05] has also
used the geometric structure of the curve complex to give a new proof of the hyperbol-
icity of the Weil-Petersson metric for these “low-complexity” cases. The aim of this
paper if to give a direct proof of the Gromov hyperbolicity of the Weil-Petersson Te-
ichmiiller space in the case 3g — 3 + p = 2. More specifically, we show the following
result.

Theorem 1.1. If X is the five-times punctured sphere or the twice punctured torus,
then Twp(Z) is Gromov hyperbolic, where T wp(Z) denotes the metric completion of
the Weil-Petersson metric on the Teichmiiller space T (L) of L.

Brock [Bro03] showed that, for cvery hyperbolic surface X, ?WP(E) is quasiiso-
metric to the pants complex (see [Bro03] for definitions) Cp(X) of the surface X. Since
Gromov hyperbolicity is a quasiisometry invariant, we get the following result:



220 1. Aramayona

Corollary 1.2. If X is the five-times punctured sphere or the twice punctured torus,
then the pants complex Cp(L) of L is Gromov hyperbolic. Q

Let X be a hyperbolic surface of genus g and with p punctures and let 7 (X) be the
Teichmiiller space of X. The Weil-Petersson metric on 7 () is a non-complete metrig
of negative sectional curvatures (see [Wol03]). However, we note that Theorem 1.1
cannot be obtained as a consequence of the negative sectional curvatures of the Wei]-'
Petersson metric, since these curvatures have been shown not to be bounded away
from zero (see [Hua03]).

Let Ty p(Z) denote the Teichmiiller space of £ endowed with the Weil-Petersson;
metric. The metric completion TWP(Z) of Typ(X) is the augmented Teichmiillerg'
space (see [Mas76]), i.e. the set of marked metric structures on ¥ with nodes on’
a (possibly empty) collection of different homotopy classes of essential simple closed'i;f;
curves on L . Here, a curve is essential if it is not null-homotopic nor homotopic to al
puncture. From now on we will refer to a homotopy class of essential simple closed’
curves on X simply as a curve, unless otherwise stated.

ENE A

Let C = C(X) be the curve complex of I, as defined in [Har81]. Recall that this{
is a finite-dimensional simplicial complex whose vertices correspond to curves on P
and that a subset A C V() spans a simplex in C if the elements of A can be realised"“'
disjointly on X. Note that inclusion determines a partial order on the set of mmphces g
of C. Following [Wol03], we can define a map A : Twp( }y — CU {0} that assigns, :
to a point in u € Typ(L), the (possibly empty) simplex of C spanned by the curves;
of ¥ on which u has nodes. The space Twp(X) is the union of the level sets of A. ¢
Then, ?wp():) has the structure of a stratified space, where the level sets of A are-?
the strata; observe that A~1({0}) = Twp(Z) and that two strata always intersect over i
a stratum. We will refer to A~ !(A(u)) as the stratum containing u and we will sayfj_
that it has label A(u). The strata of Twp(Z) are isometric embeddings of products of
lower dimensional Teichmiiller spaces (which come from subsurfaces of ) with their .
corresponding Weil-Petersson metrics (see [Wol03]). It is clear that the stratum with i
label a collection of curves that determine a pants decomposition on X consists of only
one point in 7" wp(Z) Let Mod(X) be the mapping class group of %, i.e. the group of
self-homeomorphisms of £ up to homotopy. It is known (see [Abi80]) that Mod(Z)
acts cocompactly on Twp(E). The space Typ(Z) is not locally compact: a point in ‘
Twp(Z)\ Twp(Z) does not admit a relatively compact neighbourhood. Indeed, let u be
a pointin Twp(Z) \ Zwp(X), which corresponds to a surface with a node on the simple J
closed curve o. (and possibly more), and consider the Dehn twist Tg, along o.. Then the
Ty-orbit of any point lies in every neighbourhood of u (see [Wol03]). Nevertheless, :
individual strata are locally compact, since they are (products of) lower dimensional
Teichmiiller spaces. '

The following result summarises some decp and remarkable facts about the geom-
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eiry of the Weil-Petersson metric on ‘Teichmiiller space (see Section 2 for the relevant
detinitions). Part (¢) is duc o 8. Yamada [YamO01]; (if) is due to Wolpert [Wol03] and
(+if) is due to Daskalopoulos und Wentworth [DWO03]. Let us note that all thesc results
sely on previous work by Wolpert on the Weil-Petersson metric.

‘Theorem 1.3 ([DWO03], [Wol03], [YamO01]). Let X be a surface of hyperbolic type and
let *I'wp(Z) be the completion of the Weil—Petersson metric on Typ(Z). Then,

(i) The space Twp(Z) is a CAT(0) space.

(ii) The closure of a stratum in Twp(Z) is convex and complete in the induced
metric.

(iii) The open geodesic segment (u.v]\ {u,v} from u to v lies in the stratum with
label A(u) NA(v). O

Let Xp be the Teichmiiller space of the five-times punctured sphere Xy 5 endowed
with the Weil-Petersson metric and let X be its metric completion. We will write Xr =
X'\ Xp. Since a pants decomposition of g 5 corresponds to two disjoint curves on Ly s,
we get that a stratum in X has label either o or af, where o and B are disjoint curves
on Zo 5. The closure of a stratum of the form S is given by Sq = So U (UpesSap)»
where B is the set of curves that are disjoint from 0. We observe that any curve
(. separates Xo 5 into two subsurfaces, namely a four-times punctured sphere and a
three-times punctured sphere. Then Sy corresponds to the Teichmiiller space of the
lour-times punctured sphere component of g s \ ., since the Teichmiiller space of the
other subsurface is trivial. Also, recall that a stratum of the form Syg is a single point
inX.

We prove Theorem 1.1 in the case where the surface is a sphere with five punctures.
Using the techniques from Sections 2 and 3 we immediately get the result for the
twice-punctured torus. The only difference between the two cases is the nature of
the strata in Twp(Z) which arise from pinching a single curve on the surfacc. In the
lirst case, these strata correspond to the Teichmiiller space of a four-times punctured
sphere; in the second, they correspond either to the Teichmiiller space of a four-times
punctured sphere or to the Teichmiiller space of a once-punctured torus, depending on
whether or not the curve giving rise to such a stratum separates the surface. In both
cases, ?wp(f.) has the same structure as a stratified space.

Acknowledgements. I would like to thank Brian Bowditch for introducing me to the
problem and for the interesting conversations we had about the topic. I would also
like to thank the referee for his/her very useful comments.
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2. Preliminaries

4

In order to give a proof of Theorem 1.1 we will have to make usc of some geometriof-'.
properties of CAT(0) spaces. Let us begin by recalling the definition of a CAT(O)':
space. Let Y be a geodesic metric space, that is, a space in which every two points caﬂf
be connected by a path which realises their distance; such a path is called a geodesiéf
between the two points. By a triangle in Y we will mean three points x1,x2,x3 € ¥, 2‘
the vertices of T, and three geodesics connecting them pairwise. We will write [x,-,x,]"é
for the geodesic side of T with endpoints x; and x;. Throughout this article we will-,
denote the euclidean plane by E? and the euclidean distance in E? by d,.

Definition 2.1. Let Y be a geodesic metric space and let T be a triangle in Y with""l
vertices X1,X2,x3. A comparison triangle T for T in E? is a geodesic triangle in IEz

with vertices X, X2 and ¥3 such that d(x;,x;) = d.(%;,%;) for all i, j = 1,2,3. Given a"
point p € [x;,x;], for some i, j == 1,2,3 distinct, a comparison point p for p is a pomt‘

P € [%;,%;] such that d(x;, p) = d.(%;, P) and d(x}, p) — de(X;, D). z
Definition 2.2, Let T be a triangle in the geodesic metric space Y. We say that the!?;
triangle T satisfies the CAT(0) inequality if for any points p € [x;,x;] and g C [x j,xk],é
for i, j,k = 1,2,3 distinct, we have that d(p,q) < d.(pP,g), where P and 7 arc compar-
ison points for p and g, respectively, in the comparison triangle 7 C E2. We will say?

that the space X is a CAT(0) space if every triangle in X satisfies a CAT(0) mcquahty

(RS LR

The next three results about CAT(0) spaces are well-known; they will be crucial ;
in our main argument. For a proof see, for instance, [BH99].

Pl i

Theorem 2.3. IfY is a CAT(0) space, then the distance function on Y is convex along 3
geodesics, that is, if 6,0’ : [0,1] — Y are geodesics in Y parametrised proportional to o
arc-length, then

et L e 2

d(o(1),0' (1)) < 1d(c(0),06'(0)) + (1 - 1)d(o(1),6(1)),
forallt € [0,1].
Corollary 2.4, Every CAT(0) space is uniquely geodesic.

Theorem 2.5. Let Y be a CAT(0) space and let C be a complete convex subset o
Y. Given x €Y there exists a point T(x) € C such that d(x,n(x)) = inf. cd(x, c)
Moreover, the map T : Y — C is distance non-increasing, that is, for all x,y € Y we
have that d(x,y) > dc(®(x), "(y)), where dc denotes the subspace metric. m

\DD

When interested in the large-scale geometry of a CAT(0) space, a natural question
to ask is what are the obstructions for such a space to be Gromov hyperbolic. An an-
swer to this question was given by Bowditch [Bow95] and Bridson [Bri95] scparately,
generalising a result announced by Gromov. They showed the following:
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‘Theorem 2.6 (|Bow95|, | BriVS|). LetY be a complete, locally compact CAT(0) space
which admits a cocompact isometric group action. Then, either Y is Gromov hyper-
bolic or else it contains a totally geodesic embedding of a euclidean plane.

1.ct X be the completion of the Weil-Petersson metric on the Teichmiiller space of
the five-times punctured sphere. We are going to show, using some of the techniques
m |Bow95], that if X is not Gromov hyperbolic then there exists an isometrically
vmbedded euclidean disc in one of the strata of X, which is impossible since all the
wwelional curvatures of a stratum of X are strictly negative. More specifically, we are
poing to construct, for each n € N, a map ¢, : D — X, where D is the unit disc in 2,
such that

Ande(x,y) < d(q)n(x):q,n(y)) < de(x,y),

for all x,y € D, and where A, € (0,1) with A, — 1 as n — co. If the space X were
locally compact, one could take the limit of ¢, as n tends to infinity, obtaining in
this way an isometric embedding of the cuclidcan unit disc in X. Even though X is
not locally compact, we will be able to use the structure of X as a stratified space
and the fact that individual strata are locally compact to obtain such an isometrically
¢mbedded disc. We note that we will not use the cocompact isometric action of the
mapping class group on X to construct these maps; this action will only be used in the
arguments in the next section.

'The construction of the maps ¢, is totally analogous to the one in [Bow95], where
Bowditch shows the following result (we remark that the results in [Bow95] are more
peneral than the ones we present here).

Lemma 2.7 ([Bow95]). LetY be a CAT(0) space. Given n € N and € > 0, there exists
amap Ong : ([—n,n]NZ)? — Y such that

|i=1' | —& < d(Gnelis /), Oneld, ) <[ i—i'| (1)

and
| J =7 | € < d(Oneis ))s9nelin ) <l i—J'i (2)
O

Remark 2.8. For the sake of completeness, we now give a brief account on Bowditch’s
construction. Let n € N and € > 0 and let ¢ be a natural number bigger than 2—;‘2 Let
0 :[0,qn] — Y be a geodesic segment in Y and let y be a point in Y at distance at
feast n from o. Let 7; : [0,d(y,6(i)] — Y be the unique geodesic from o(i) to y, for all
i € {0,qn] NN. Bowditch then sets, forall i,j:=0,...,nand forall p=0,...,g -1,

0p(i, J) = Tpn+i(J) and shows that there exists a number p =0,...,q— 1 such that ¢,
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satisfies (1) and (2).

Bowditch then shows that if, in addition, the space Y is not Gromov hyperbolic"
then the maps ¢, satisfy thc following non-degeneracy condition.

Lemma 2.9 ([Bow95]). Let Y be a CAT(0) space and suppose Y is not Gromov hyp
perbolic. Then the maps ¢, in the result above satisfy, in addition, that

i

and .
d(Onelisj+1),0ne(i+1, ) > 1/2 @)
forallneN. D

We now give an extension, using standard arguments about CAT(0) spaces, tolf-':
Bowditch’s construction. It will play a central role in the proof of Theorem 1.1.

Lemma 2.10. Let Y be a CAT(0) space and suppose that Y is not Gromov hyperbolic. ¥
Fix a number N G N and consider K = [-N,N) x [-N,N] C R?, endowed with the

euclidean metric. Then there exists a sequence (On)nen of maps 0, : K — Y such that

At

o

N 100 Ll T,

Ande(x,5) < d(Qn(x),04(y)) < de(x,y),

where b, € (0,1) foralln e Nand h,, — 1 as n — co.

15T e

Proof. Let (€,)neN be a sequence of positive real numbers tending to zero and let 5
®n = Qn g, be the map described in the previous two Lemmas.

First, we are going to extend the map ¢, to K as follows: let 6, : [0,1] — ¥ be
the unique geodesic segment in ¥ from ¢,(0,0) to ¢,,(1,0). Similarly, let o/, : [0,1! —
Y be the geodesic segment in Y from ¢,(0,1) to ¢,(1,1). Here, and from now on,
we assume that all geodesics are parametrised proportional to arc-length. For r €
[0,1], let T : [0,1] — Y be the unique geodesic in ¥ connecting 6,(¢) and ©/,(z). We
set §,(1,5) == T(s), for all t,s € [0,1]. We can extend ¢, to K by performing this :
construction on each square [i,i-+1] % [, j+1] for all i, j € [-N,N —1]NZ, provided
n is large enough so that ¢, is defined on the whole of K. Note that, up to extracting a
subsequence, we can assume thal this is always the case. 3

46 AR SR Rk i AR e L R e

We now proceed to show that the maps ¢, are continuous on K. Let 0 <t,¢/,5,5' < |
1. From the convexity of the distance function we obtain that
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d(w/(s),gi(s)) - xd(g/(0),7(0)) + (1 = s)d(7/ (1), 7(1))
= sd(0n(t),0a(t')) + (1 - 5)d(05(t), 0, (¢"))
= |r-1}.

V'rom this inequality and the fact that 77 : [0,1] — Y is a geodesic paremetrised pro-
protional to arc length for every € [0, 1], we deduce that

d(t}(s), T (s"))
d((s), 7 (') +d(T}(s), Th (s"))
= |s—s|+|t=1],

d(¢n(t7s),¢n(tlvsl))

IA

!
1

and thus ¢, is continuous on [0, 1] x [0, 1] for all n &€ N. A totally analogous argument
pives the result for K.

Notation 2.11. Let L be a straight line in K. We will say that the images of L under
i, get arbitrarily close to being geodesic in Y if the Hausdorff distance between ¢, (L)
and the geodesic in Y with the same endpoints tends to zero as n grows.

Next, we show that the images of horizontal and vertical lines in K under ¢, get
arbitrarily close to being parallel geodesics in Y. Let L be a horizontal line in K of
the form [—N,N] x {j}, for some j € [-N,N]NZ. The fact that ¢, (L) gets arbitrarily
close to being geodesic in Y follows directly from inequality (1) and the definition
ol the maps ¢,. Now, since the distance function on Y is convex along geodesics
{'Theorem 2.3) we get, from inequality (2), that

d(¢n(t3j)=¢n(t’j+ 1)) S 15

lorallt € [- N,N), j €[-N,N —1]NZ and n € N. The convexity of the distance func-
tion on Y yields that the real function [t -— d(¢n (2, j),0a(2, j+ 1))] tends, as n grows, to
areal function which is convex (and also bounded, from (2)). But a real function which
is convex and bounded must be constant and therefore d(n (¢, j),9n(2,j+1)) — 1 as
1 — oo, from (1).

Consider now an arbitrary horizontal line L = [—-N,N] X {so} in K, for some sy €
| -N,N]. For the simplicity of the notation we will assume that 0 < 5o < 1. Let
pa i [0,1] — Y be the geodesic in ¥ between ¢,(—N,s¢) and ¢,(N,s0). Let ¢, =
0u([=N,N] x {0}) and ¢}, = ¢,({—N,N] x {1}) for all n € N. We know, from the dis-
cussion above, that d(c,(t),c, (1)) — 1 as n — oo for all z € [—N, N]. Note that c,, (resp.
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¢},) is geodesic when restricted to [i,i + 1] x {0} (resp. [£,i + 1| x {1}). From the con.
vexity of the distance function we get that d(c,(t),pn(t)) — so and d(c),(t),pn()) =
1 —sg as n— oo, But d(n(2,50),¢x(¢)) -+ so and d(9,(¢,50),c,(t)) — 1 —sp as n— os;
since [s - » P, (2,5)] is geodesic for a fixed z. Thus the images of horizontal lines in K
under ¢, are paths that get arbitrarily close o*being parallel geodesics n — c. Note
that this implies that, up to taking a subsequenz:e, the maps ¢, are injective on K. .

By a completely analogous convexity argument, we can deduce that the imagei
of a vertical segment of the form {i} x |-N,N] under ¢, where i € [-N,N]NZ, get
arbitrarily close to being geodesic in Y as z grows. Similarly we obtain that the imageg
of any two vertical lines in K under ¢, get arbitrarily close to being paraliel geodesics_q;
as n - oo,

So thc maps ¢, are continuous, injective and map horizontal (and vertical) lme$

in K to paths in Y which get arbitrarily close to being parallel geodesics. Let dj be;
the pull-back metric on K determined by ¢,. Since d,((—N,—N), (N,N)) is boundecf)
above and below (note that, in particular, it is bounded below away from 0, from (3)“),
and (4)) we can assume that d,((—N,—N), (N,N)) — a > 0, up to extracting a subse-
quence. Also recall, from inequalities (1) and (2), that d,,({--N,—N),(—N,N)) — ZM
and d,((—N,—N),(N,—N)) — 2N as n — co.

Let f: R2 — R? be an affine map such that f(z,0) = (z,0), for all # € R, and that;
d.(f(-N,—N), f(N,N)) = a. By considering ¢, o f !, which we denote again by q>,,
abusing notation, we deduce that the maps ¢y, restricted to K, satisfy that

R TRL G S, o N RN e

de(x,y) — €, < d(n(x),0n(y)) < de(x,y),

for all x,y € K. Consider the restriction of ¢, to the unit disc I in R2, It follows imme-z
diately from the last inequality that there exists a sequence (An)nen of real numbers, |
with Ay = Ay(€n), Ay € (0,1) and A, — 1 as n — oo, such that 1

de(x,y) < d(0n(x),9n(y)) < de(x,y),

G ey

as desired. O

3. Proof of the Theorem

Let us begin with some technical results that will be important in the proof of Theo-
rem 1.1. '

Remark 3.1. Let X be a hyperbolic surface. In [Wol03], Corollary 21, Wolpert shows '
that for a stratum S defined by the vanishing of the length sum [ = [; +...1,, where /;
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corresponds to the length of some curve o; on the surface for i = 1,...,n, the distance
o the stratum is given locally as d(p,S) = (2r!)/2 + O(12). In particular, if (#m)meN
i» i sequence in X such that d{uy,,S) — 0asm — o we get that [, (0;) — Oasm — oo,
forall i=1,...,n, where I, (&) denotes the length of o in u,,.

Lemma 3.2. Ler Sq and Sp be two different strata in Xr such that Sq N Sp # 0. Let
(#)nen and (Va)neN be sequences in X such that d(up,Sa) — 0, d(va,Sg) — 0, and
{1ty vn) = 0 as n — oo. Then d(un,Sop) — 0 as n — oo (and thus d(va,Seg) — 0 as
well).

I'roof. Suppose, for contradiction, that the result is not true, that is, there exists R > 0
such that d(un,Seg) > R for infinitely many n. Let I" be the mapping class group of
Y5. Since the action of I on X is cocompact there is a compact subset Z of X and
i sequence (Yn)pen in I' such that ¥, (u,) € Z for all n C N. Note that d(u,,v,) -+ 0
s 1 — oo if and only if d(y,(un),¥u(vs)) — 0 as n — o, since I acts isometrically
on X and therefore d(Y,(u,),Ya(vn)) = d(un,vn) for ali n € N. We replace u, and v,
by ¥, (un) and ¥,(v,), respectively; abusing notation we denote the new points by u,
and v, again. Then, up to extracting a subsequence, we get that the sequence {1, ) eN
converges to a point ug € X, since Z is compact.

Since d(u,,Sq) — 0 as n — o, then I, (&) »0asn — co. Similarly, we have that
l,(B) — 0 as n — co. From the remark above and since d(un,Sog) > R for infinitely
many n, it follows that there must exist a constant C = C(R) > 0 such that /,, (B) > C,
{or infinitely many n € N. Therefore, for the simple closed curve B we have that
1., (B) > C > 0, for infinitely many n, and /,, (B) — O as n — oo, which is impossible
since we know from the hypotheses that d{u,,v,) — 0 as n — oo, |

As a trivial consequence, we get the following corollary:

Corollary 3.3. Given r >0 and a stratum of the form Sy, let B(r) = B(Sog, 1) be the
ball of radius r around Sop. Then, there exists D = D(r) > 0 such that the following
holds:

1.0t (Un)neN and (vp)nen be two sequences in X such that d(un, So \ (B(r) N Sy)) — 0
and d(vp,Sg \ (B(r) NSg)) — 0 as n — oo. Then d(un,vs) > D for infinitely many
n N, O

P’roof of Theorem 1.1. Suppose, for contradiction, that X is not Gromov hyperbolic.
Since X is a CAT(0) space, we can construct a sequence of maps (¢, : D — X),en
as described in the previous section. Using the structure of X as a stratified space,
there is a stratum S C X such that ¢,,(D) C S (note that § may have label @, so that
S = X. Also, § cannot have a pants dccomposition as label, since recall that such a
stratum consists of only one point). The stratum S corresponds to the Weil-Petersson
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Teichmiiller space of a properly embedded hyperbolic subsurface g ¢. ¥y 5 (possibly
with £g = Zg5). Let I'y be the mapping class group of Xg, and recall that Ty acts:
cocompactly on §. We will denote S\ S by Sr. We now have two possibilities:

(a) There exists a point xo C ID and a constant 8 = 8(xo) such that d(¢,(x0),SF) > 8,
for infinitely many n € N. We can assume, up to passing to X /Iy and lifting back._:.’
that the sequence (¢x(xo))ncN converges to a point w € S, since the action of T on §:
is cocompact. )

Notation 3.4. We will write D, (a,r) to denote the euclidean disc in E? with centre a
and radius r.

Consider D,(xo,n) , where = min(8/4,1 — d,(0,x)). Then,

d(0n(%),SF) 2 d(9n(%0),SF) — d(9n(x), Pn(x0)) > 8—2M > /2> 0,

for all x € D,(xo,m). So, d(¢,(D.(x0,M)),SF) > &/2, for all n € N. Since S is locally"::
compact, the maps ¢, converge (maybe after passing to a subsequence) on D, (xg,M) to’
amap ¢. Therefore, d(D,.(x9,M)) is a copy of a euclidean disc in S, which is impossible';
since all its sectional curvatures are strictly negative,

(b) Otherwise, for all x € D, d(¢d,(x),SF) — 0 as n - eo. Again we can assume (up to
the action of I') that ¢,,(0) — w’ as n — oo, for some w' € Sp.

Remark 3.5. One of the consequences of the Collar Lemma is that if o, and [ are inter-
secting curves on a hyperbolic surface £, then their lengths cannot be very small simul-
taneously. In the light of this result, it is possible to show (see [Wol03], Corollary 22)
that there exists a constant ko = ko(Z) such that two strata 1,52 C Twp(E) \ Ty p(Z)
either have intersecting closures or they satisfy d(Sy,S;) > ko.

Let ko = ko(Zs) be the constant given in the remark above and consider the maps
9, restricted to D,(0,ko/3). We may as well assume that kg < 1. From Remark 3.1,
we deduce that § must have label 0. Otherwise, if S had label o, for some simple
closed curve «, the fact that d(¢,(x),SF) — 0 as n — oo, for all x € D,(0,ko/3) would
imply that there exists a curve B in Zo s, disjoint from o, such that d(¢,(x),Sep) — 0
as n — oo, for all x € D,(0,ko/3). But we know that a stratum of the form Syg consists
of only one point, which contradicts the construction of the maps ¢, since we know
that the maps ¢, contract distances by at most a factor A,,. Thus we assume, from now
on, that S has label 0 and so S = X and S = XF.

We observe that, given u € Xg, there are at most two non-trivial strata, say Sy, and
Sg, in X such that u € S, N Sp. These strata correspond to two (possibly equal) simple
closed curves on the surface on which u has nodes. Note that in the case when there are
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exactly two strata, we get that {u} - Sy (155. So we deduce that d(¢n(X),§aU§;5) —0
asn - oo, forallw € D.(0,4y/3).

Our next aim is to show that there exists x; € D,(0,kp/3) and k; = ki (x1) > 0,
wilh ky < ko/3, so that the images under ¢, of the points in D.(x1,k;) get vniformly
arbitrarily close to the same stratum as n — co. Using this result, we will be able
10 define a distance non-decreasing projection from D, (x),k;) to the closure of that
particalar stratum.

Suppose that ¢,(0) — W € Sy \ Sqg as n-— oo, In particular, we can choose k < ko
small enough so that there exists > 0 with d(¢n(x),Sep) > r, for all x € D, (0, ky)
and for all n € N. Let D = D(r) be the constant given in Corollary 3.3 and consider
1,(0,k), where k = min(D/3,k;/3). We claim that we can take (x1,k;) to be (0,k).
Suppose, for contradiction, that the images of D,(0, k) do not get uniformly arbitrarily
close to S; that is, there exists Ko > 0, a subsequence (¢ )meN C (0r)nen and points
it € Om(D.(0,k)) such that d(um,Sq) > Ko for all m € N, We know that, for all
m €N, up, = ¢ (xy) for some x,,, € D,(0,k) and thus, up to a subsequence, x,, — y €
1.(0,k). From the properties of the maps ¢, we have that d{uy, ¢, (y)) = Oasn — oo,
Therefore, d(um,So USg) -— 0 as m — co and thus d(um,Sg) - 0, since we know that
{1, Se) > Ko for all m. This contradicts Corollary 3.3, since the points u,, and ¢,,(0)
lic in X \ B(r), d(¢m(0),Se) — 0, d(um,Sp) — O but d(um, ¢=(0)) < D/3.

The case §,(0) — v’ € Sap as n — oo is dealt with in complete analogy, considering
V) to be any point in D,(0,ko/3) \ {0} and and defining k; in a similar way as we did
above.

Since X is a CAT(0) space and Sy is complete and convex we can consider the
projection 7t : X — S as defined in Theorem 2.5. Recall that this projection is distance
non-increasing; in particular, for all x,y € D,(x|,k;) we have that

d(m(0n(x)), T(9n(¥))) < d(Pn(x),9n(y)) < delx,y)-

Choose a sequence {8, )men of positive reals such that 8,, — 0asm — oo, Uptoa
subsequence we can assume that, given m € N, d(¢n(x),8¢) < 8, for n > m and for
all x € D,(x1,k; ). We have that

d(9n(x),0n (7)) < A(0n(x), T(Pn(x))) +d(9n (), T(9n(¥))) + d(7(9n(x)), (6 (¥))),

and thus, forallm € N,

d(m(0m(x)), M(Om(y))) > d(Om(x),0m(y)) —20m > }"mde(X,Y) — 20,
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Lety, =mod,: D.(x(,k;) — So. Then there exists a sequence (AL w Of positive
real numbers tending to 1 so that

Ande(x,y) < d(Wn (%), ¥n(¥)) < de(x,).

(we could simply take A, = A, -- 28, since k; < 1 and therefore 28, < 28,d.(x,y)

for all x,y € D,(x{,k;)). We are now back to the situation described at the beginning '

of Section 3, this time in a stratum of the form S,. Reasoning in a totally analogous

way to cases (a) and (b) we get that either we can find an isometrically embedded -
copy of a euclidean disc in Sq, or else we can find x; € D,(x),k;) and k» > O such that
D.(x3,k2) € Dy(x1,k;) and d(dn(x),Sap) — 0 as n — oo, for all x € D,(x2,k2), which -
is impossible since we know that ¢, decreases distances at most by a factor A,. In any

case, we get a contradiction.

Therefore X is Gromov hyperbolic, as desired. O
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Convexity of geodesic-length functions: a reprise

Scott A. Wolpert

Abstract

New results on the convexity of geodesic-length functions on Teichmiiller
space are presented. A formula for the Hessian of geodesic-length is presented.
New bounds for the gradient and Hessian of geodesic-length are described. A
relationship of geodesic-length functions to Weil-Petersson distance is described.
Applications to the behavior of Weil-Petersson geodesics are discussed.

I. Introduction

lu this research brief we describe a new approach to the work [Wol87] (esp. Secs. 3 and
), as well as new results and applications of the convexity of geodesic-length func-
tions on the Teichmiiller space 7. Our overall goal is to obtain an improved under-
standing of the convexity behavior of geodesic-length functions along Weil-Petersson
{WP) geodesics. Applications are presented in detail for the CAT(0) geometry of
ihe augmented Teichmiiller space. A complete treatment of results is in prepara-
tion [Wol04]. Convexity of geodesic-length functions has found application for the
convexity of Teichmiiller space [Bro02, Bro03, DS03, Ker83, Ker92, McMO00, SS01,
8599, Wol87, Yeu03], for the convexity of the WP metric completion [DW03, MWO02,
Wol03, YamO1], for the study of harmonic maps into Teichmiiller space [DKWO00,
Yam99, Yam01], and for the action of the mapping class group [DW03, MW02]. We
consider marked Riemann surfaces R with complete hyperbolic metrics possibly with
cusps and consider the lengths of closed geodesics. The length of the unique geodesic
in a prescribed free homotopy class provides a function on the Teichmiiller space.
Specifically for ¢ a closed curve on R, let £s(R) denote the length of the geodesic
homotopic to 6; more generally for u a geodesic current [Bon88], let £,(R) denote the
total-length of the geodesic current for R.

A closed geodesic 6 on R determines a cyclic cover of R by a geometric cylinder
(. For £ the length of ¢ the geometric cylinder is represented as H/ < t — e/t > for
IT the upper half-plane with coordinate ¢; for w = exp{2mi li;gl) the cylinder is further

72
represented as the concentric annulus {e'zf‘ < |w| < 1} in the plane. We discovered
in [Wol87](Sec. 4) that the potential operator for the Beltrami equation on ( is diago-
nalized by the 8! rotation action of the cylinder and that the potential equation can be
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solved term-by-term for the corresponding Fourier expansions. The special properties
for the potential theory generalize the properties for the function theory of the cylin-
der. For instance holomorphic differentials on R, lifted to C, admit Laurent (Fourier)
expansions. The WP dual of the Hessian of 45, a quadratic form for holomorphic
quadratic differentials on R, has Hermitian and complex-bilinear components diago-
nalized by the terms of the corresponding Laurent expansions [Wol87](see Lemmas.
4.2 and 4.4.) We further found that the contribution for a single Laurent term is a pos-
itive definite form. At this time, we have simplified the considerations of the Hessian;
and are now able to effect a straightforward comparison to thc Petersson pairing for';;
holomorphic quadratic differentials [Wol04]. The simplified considerations provide;
the basis for an improved understanding of the Hessian and of convexity. In the fol-,
lowing paragraphs we outline the approach and results. We close the discussion bya
providing several applications complete with proofs.

2. The Hessian of geodesic-length

e At S A T T IR

the geometry of the space of complete geodesics on the hyperbolic plane. For I the!
upper half plane with boundary R=RU {eo}, the space of complete geodesics on
H is given as G = R x R\ {diagonal}/{interchange}. A point p of H is at finite?
distance d(p,0) to a complete geodesic 6 and so e~ 24(P%) defines a Gaussian on
G. The natural area measure on G is ® = (a —b)“2dadb in terms of the endpoint}
coordinates (a,b)/ ~. The measure ¢~24(P%) is finite for G. Finiteness is noted as
follows. A point z of H, its conjugate 7, and the boundary points {a, b) have cross ratio
cr(z,a,b) = ng‘i—;—:b‘g%[. The simple inequality cr?(z,a,b) > e~24(24) js established by '_
considering the point triple (i,a, —a). Finiteness of the measure now follows from
the inequality e “24(:%)y < (1 +a?)~"L(1+b?)~'dadb for the point triple (i,a,b). A}
geodesic current y for R naturally lifts to the upper half plane; the lift is a positive

measure du on the space G of complete geodesics. For R represented as the quotient
H/T the integral

We introduce for u a gcodesic current a natural function P, on R. We begin w1th§
i
X
-ﬁ
3

Pu(p) = /g e=4(P9) gy(c) @D

defines a I'-invariant function on H, the mean-squared inverse exponential-distance of j
p to p. Finiteness of the integral is established by comparing du to ®. The construction 3
for P, is motivated by the construction for the classical Petersson scries representing
the differential d{s-of the geodesic-length on 7" [Gar75, Gar86]. The reader can check
that y — P, is a continuous mapping from the space of geodesic currents to the space
of continuous functions on R. The central role of P, in studying geodesic-length func- .
tions and the total-length of geodesic currents is discussed and demonstrated below.
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From Kodaira—Spencer deformation theory the infinitesimal deformations of R are
1epresented by the Beltrami differentials # (R) harmonic with respect to the hyper-
holic metric [Ahl61]. A harmonic Beltrami differential is the symmetric tensor given
us @(ds?)~! for ¢ a bolomorphic quadratic differential with at most simple poles at
the cusps and ds? the hyperbolic metric tensor. At R the differential on 7 of the
peodesic-length of £ is bounded for v € H(R) as

8
@to(W) < 7 [ MPoda

lor dA the hyperbolic area element and from applying the inequality I(% )2| < 4e24(20<)
and the formula of F. Gardiner [Gar75]. By taking limits the integral bound is gen-
cralized to the total-length of laminations. Ahlfors noted [Ahl61] for second-order
dceformations defined by harmonic Beltrami differentials that the WP Levi-Civita con-
nection is Euclidean to zeroth order in the following sense. A I'-invariant Beltrami
differential v on H determines a one-parameter family as follows. For the complex pa-
rameter € small there is a suitable sclf-homeomorphism f€ of H satisfying ff = evf}.
I'ne homeomorphism f* serves to compare the quotients H/I" and H/fEo "o (%)~ 1.
I‘'or a basis of harmonic Beltrami differentials vy, . . .,V, and small complex parameters
r, and V(€) = Y ;€,V; the association (g1,...,&,) to H/ Y€ oo (f¥®)~1 in effect
provides a local coordinate for 7. Ahlfors found for a basis of harmonic Beltrami dif-
lerentials that the local coordinates for 7 are normal: the first derivatives of the WP
metric tensor vanish at the origin [Ahl61]. The observation is used in the calculation
of the WP Riemannian Hessian £,,(v, V).

Our analysis of the Hessian consists of three considerations. We consider the met-
ric cover of the cylinder C by an infinite horizontal strip § in C with the S! rotation
action of the cylinder lifting to an R action by Euclidean translations of the strip. We
purposefully normalize the covering S so that a Euclidean horizontal translation by
d is a hyperbolic isometry with translation length 8. First, we consider the formula
for the variation of the translation length £ of the covering of C. For z the complex
coordinate for the strip and f® the suitable self-homeomorphism of.$ the translation
cquivariance provides that £& = f€(z+ /) — f¥(z). We find for v a harmonic Beltrami
differential defining a deformation and ¥ a fundamental domain for the metric cover-
ing of $ to ( the first variation

| d . 1
- - — =, 7= —R idzd7
¢ TCRe/grdEledZdz p e/fvz zdZ
and the second variation

.1 a2 .., 2 e
= ERe/y d—ezfz idzdz = ERe/vazldzdz
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for f a suitable solution of the potential equation f; = v. The sccond variation for«
mula should be compared to the considerably more involved formula of Theorem 3, 2
of [Wol87]. Second, we consider the Fourier expansion of v on § relative to the trans-
lation group of the covering to C. From Corollary 2.5 and formulas (4.1) of [W0187]_E
the potential equation f; = v admits a term-by-term solution relative to the Fourief;;
expansion of v. In particular for the Beltrami differential with series expansion

27
= — 2 Z = -
4sin“ 3z Zane‘“” €= 7

we find that
enz +-1

el _ P
fZ :2(829{20,1 en—1 —e ZSKZa,,m).

The quantity f; is a lincar form in the Fourier expansion of v. The expansion enables;
calculation of the above variation integral term-by-term and the calculation is a spec1a1§
feature for harmonic Beltrami differentials. Third, we simplify the resulting term-by-«’

3 P SNt R S Y SR

term expressions to obtain an exact formula in terms of the operator

i G e misnita s St

Mol = [ g

for quadratic differentials ¢ invariant by r — ¢‘r on Ff with coordinate ¢, and the Her-,
mitian form i

- 5 2 b -
Q0(B,d) = /1<|;|<et BS (Imt) 2dtdt.

In [Wol87)(Theorem 2.4) we found that A[¢] is associated to the Eichler integral of @.
The overall resulting final formula

32 16 -

is the replacement for the intricate formulas of Lemmas 4.2 and 4.4 of [Wol87]. The
formula can be compared to the formula of Gardiner for the first variation [Gar75].
Bounds for the Hessian of £ in terms of P; and the Petersson product can be derived
by comparing the two Hermitian forms

) 2 4 i dtdi
oA wd [ loPumi) 3T

where (Imt)~!|t| is comparable to the exponential-distance of ¢ to the imaginary axis.
The bounds are straightforward since the Hermitian forms are diagonalized by the
Fourier expansion of ¢.
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3. Convexity results

We find that for the total-length £, of a geodesic current its complex Hessian on 7, a
Hcrmitian form on #H(R), is bounded in terms of the integral pairing with factor P,
and hyperbolic area element

=<
_ <3 < _
/R VPP,dA < 2306,(v,p) < 16 /R VpP,dA
for v,p € H(R). Since [y VPdA is the WP pairing <v,p>wp, we have the following
comparison of Hermitian forms

3.~
( Bubyp < 76096, < 16, By

‘T'he strict convexity of geodesic-length functions and of the total-length of geodesic
currents is an immediate consequence of the positivity of I’,. We find further conse-
qquences of our calculations and considerations of IP,. The first and second derivatives
of total-lengths ¢, , ¢, actually satisfy general comparisons

a0, (V)deu(V)| < 6.8,(v,V) + 05 (v, V) 3.D

and
4190 (v)0l, (V)] < £,00£,(v,V) +£,096 (V, V). (3.2)

‘The complex Hessian and WP Riemannian Hessian of a total-length £, also satisfy a
general comparison
004, < £, < 309¢,,.

A basic consequence of the formulas is the observation that the first and second
derivatives of a geodesic-length £ are bounded in terms of the supremum norm of
P on R. The magnitude of Py can in turn be analyzed in terms of the thick-thin
decomposition of the surface [Wol92, II, Sec. 2|. For ¢ a simpie closed geodesic a
suitable decomposition of R has three regions: i) thick ; ii) cusps and thin collars not
intersecting ©; and iii) thin collars which 6 crosses. For the first region since e—24(p.0)
satisfies a mean value estimate and the injectivity radius is uniformly bounded below
the supremum of P is bounded by the L!-norm ||Ps|| = #£5. For the second region the
distance to o is at least the distance 3 to the region boundary and the supremum can be
bounded using the general inequality ¢®p > ¢ bounding the exponential-distance and
the injectivity radius for a collar or cusp [Wol92, II, Lem. 2.1]. For the third region
the supremum of Ps is bounded in terms of the reciprocal injectivity radius, which
from the general inequality is bounded by e‘°/2 since o crosses the collar.

We accordingly find in complete generality that there exists constants c,, ¢, inde-
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pendent of R such that the gradient of the geodesic-length of a simple curve is bounded
in terms of the geodesic-length itself )

(gradéc,grad&,)W,, <ells+ E(Z,ee"/z) 3. 3}

and for the relative systole sys,.;(R), the lcast (closed) geodesic-length for R, that

T Tt A

Cax(sysret (R)AEMET (| ) 0 <90l < cu(1+L5e™/?) () )y e 3. 4)

In brief the first and second derivatives of a simple geodesic-length relative to the WP?"
metric are universally bounded in terms of the geodesic-length and the relative systole'.&
The bound (3.3) can be compared to the familiar universal bound ||d{¢s|lr < 245 forg;
the differential relative to the Teichmiiller metric [Gar75]. The degeneration of P ¢ ;
be further analyzed in terms of the thick-thin decomposition [Wol92, 11, Sec. 2]. %5
For the study of geodesic currents and applications of geodesic-lengths it is des1r-lﬁ
able to have bounds (dependent on R) proportional to the geodesic-length. We findi
for compact subsets of the moduli space of Riemann surfaces that there are general
uniform bounds. In particular we have the following.

Theorem 3.1. Given ‘T, there are functions ¢\ and ¢, such that for a curve G
c1(sysret(R)) bs < Pg < ca(sysret(R)) 4o

with c|(s) an increasing function vanishing at the origin and c,(s) a decreasing func-
tion tending to infinity at the origin. For the total-length of a geodesic current u

c1(sysret (R)) €u{ , Yyp < 008, < ca(sysret(R)) 6u(, Yyypr ,

In summary for compact subsets of the moduli space of Riemann surfaces the Hessian
of geodesic-length is proportional to the product of the geodesic-length and the WP .
pairing.

The first-derivative second-derivative comparison inequalities (3.1), (3.2) provide -
for new convexity results.

Theorem 3.2. For the closed curves O, ..., 0, their geodesic-length sum £y, + - - -+
Co, satisfies: (b + -+ + Lo, )'/? is strictly convex along WP geodesics, 1og(£a, +

-~ +£y,) is strictly plurisubharmonic, and (Lo, + - -+ + o, )" is strictly plurisuper-
harmonic.

S. K. Yeung showed with a detailed analysis of the first-derivative and second-
derivative that (4, +---+ 4g,) %, 0 < a < 1, is strictly plurisupcrharmonic [Yeu03].
He applied the result to study the behavior of line bundles and L?-sections over 7.
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(". McMullen found and used that an (’a' has complex Hessian uniformly bounded
telative to the Teichmiiller metric [McMO0, Thm. 3.1]. The present result offers an
claboration: a sum (£g, + -+ £q,) " is plurisuperharmonic with complex Hessian
hounded as

~00((fay +--+ +La,) 1) < (200(loy + - +40,)) oy + - +La,) 2. (3.5)

4. The CAT (0) geometry of the augmented Teichmiiller space

Applications of geodesic-length convexity are provided by considering the augmented
‘Teichmiiller space T with the completion of the WP metric [Abi77, Ber74, Mas76]. T
is the space of marked possibly noded Riemann surfaces; T isanon locally compact
space [Abi77, Ber74]. Tisa CAT (0) metric space [DW03, MW02, Wol03, Yam01].
The geometry of CAT (0) spaces is developed in detail in Bridson-Haefliger [BH99].
l'or a metric space a geodesic triangle is prescribed by a triple of points and a triple of
joining length-minimizing curves. A characterization of curvature for metric spaces
is provided in terms of distance-comparisons to geodesic triangles in constant curva-
ture spaces. For a CAT(0) space the distance and angle measurements for a triangle
are bounded by the corresponding measurements for a Euclidean triangle with the
corresponding edge-lengths [BH99, Chap. 11.1, Prop. 1.7].

T with the completion of the WP metric is a stratified unique geodesic space with
the strata intrinsically characterized by the metric geometry [Wol03, Thm. 13]. The
stratum containing a given point is the union of all open length-minimizing segments
containing the point. To characterize the strata structure in-the-large consider a ref-
crence topological surface F for the marking and C(F), the partially ordered set the
complex of curves. A k-simplex of C(F) consists of £+ [ distinct nontrivial free homo-
lopy classes of nonperipheral mutually disjoint simple closed curves. Consider A the
natural labeling-function from T to C(F) U {}. For a marked noded Riemann surface
(R, f) with f : F — R, the labeling A((R, f)) is the simplex of free homotopy classes
on F mapped to the nodes on R. The level sets of A are the strata of T [Abi77, Ber74].
The strata of 7 are lower-dimensional Teichmiiller spaces; each stratum with its nat-
ural WP metric isometrically embeds into the completion T [Mas76]. The unique WP
peodesic pg connecting p,q € 7T is contained in the closure of the stratum with label
A(p) N A(q) (see [Wol03, Thm. 13]). The open segment pg — {p,q} is a solution
of the WP geodesic differential equation on the stratum with label A(p) N A{g). It
follows from Theorem 3.1 that a geodesic-length function finite on pg is necessarily
strictly convex and on the open segment differentiable.

A complete, convex subset C of a CAT(0) space is the base for an orthogonal
projection, [BH99, Chap. I1.2, Prop. 2.4]. For a general point p there is a unique
point, the projection of p, on ( such that the connecting geodesic realizes the distance
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to C. The projection is a retraction that does not increase distance. ‘The distance d to:
C is a convex function satisfying d¢(p) —dc(q)| < d(p,q), BHYY, Chap. 11.2, Prop,
2.5]. Examples of complete, convex sets C are: points, complete geodesics, and fixeds’
point sets of isometry groups. In the case of 7 since geodesics coincide at most at:
endpoints, the fibers of a projection are filled out by the geodesics realizing distance"i
betwecn their points and the base. In the case of 7 the closure of each individual'§
stratum is complete and convex, thus the base of a projection [Wol03, Thm. 13]. For{
simple disjoint closed curves the relation of the quantity £!/2 = (Coy + -+ €q,)/? toﬂ
a stratum of 7 was considered in [Wol03, Cor. 21]. The expansion of the WP metn’cf,’
about a stratum [Wol03, Cor. 4] enabled us to give an expansion for the distance to*!}
a stratum. The expansion combines with the comparison inequality (3.1) to provide:
an inequality for distance in-the-large. In the following the quantity £'/2 serves as a"
Busemann function for the stratum of vanishing. ’
Theorem 4.1. For closed curves Q.,...,0, represented by simple disjoint distincti
Jfree homotopy classes, let S be the closed stratum of T defined by the vanishing of‘i
£=1Lq, + - +Lq, The WP distance of a point p to S satisfies in terms of {(p): in’
general dyp(p,S) < (2n0)Y/2 and locally for € small, dwp(p,S) = (216)'/2 + O(¢2). |
Corollary 4.2. For B represented by a simple free homotopy class the WP gradient of
{g satisfies (grad lg, grad€|3>w P2 %ZB. As above, for Oy, ...,0, and B represented by,
disjoint distinct free homotopy classes: for ¥(s),0 < s < so the unit-speed distance-:
realizing WP geodesic connecting S to p the derivatives of (27L€)‘/ 2 and {g along v.
satisfy (%(270@)]/2(7@)) >1land %Zﬁ(y(s)) >0. :

G. Riera has recently obtained an exact formula for <gradéa,gradéﬁ>wp as an
infinitc sum for the lengths of the minimal geodesics connecting o to [ [Rie03].
The above lower bound for (grad g, grad£g),,, also follows from his formula. The
lower bound and the bound (3.3) can be combined to show that the injectivity ra-
dius injwp (the minimal distance to a proper sub stratum in 7’) of 7" is compara-
ble to the square root of the least geodesic-length. In particular the bounds provide
for positive constants ¢, Ca and Cuv such that for £ = £y, +--- + £, £ < ¢4 then
il < (grad{,grad )y, , < c,.f and for £(R) > ¢y, dwp(R,R') < Crax then £(R') > ¢, /2.
The overall bound ¢ injwp < (sysre)'/? < ¢’ injyp for positive constants is a conse-
quence of the fact that injwp and (sysye) 172 are comparable for small values and are
bounded in general.

We now present in detail two further applications for the behavior of WP geodes-
ics. The first is Brock’s approximation by rays to maximally noded surfaces [Bro02].
J. Brock noted that the CAT(0) geometry and the observation of Bers on bounded
partitions [Ber74] provide for an approximation of infinite WP geodesics. First note
that the (incomplete) finite length WP geodesics from a point of 7" to the marked
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noded Riemann surfaces can be extended to include their endpoints in 7. As a con-
sequence of the CAT (0) geometry the initial unit tangents for such geodesics from a
point to a stratum provide for a Lipschitz map from the stratum to the unit tangent
sphere of the point. Accordingly the image of 7 — 7 in each unit tangent sphere has
measure zero and consequently the infinite length geodesic rays have tangents dense
in cach tangent sphere. In particular to approximate rays it suffices to approximate the
inlinite length rays.

From the result of Bers there is a positive constant Lz, depending only on the
penus and number of punctures such that each surface has a maximal collection of
simple closed curves oy, ..., 03, 34, (2 partition) with total geodesic-length bounded
by Lgn. By Corollary 4.2 each point of 7 is at most distance (2L, ,)'/? to a max-
imally noded Riemann surface. To approximate an infinite ray y in 7 with initial
point p, consider a point g on the ray with dwp(p,q) large. The point g is at dis-
tance at most (2%tL, ,)'/? to a maximally noded Riemann surface g¥. Since 7 is a
unique geodesic space the triple (p,q,q") determines a geodesic triangle. The - com-
parison to a Euclidean triangle provides that the initial angle between pg and pqg* is
()(Lé,/,? dwp(p,q)~!) [BH99, Chap. 1I.1, Prop. 1.7]. Further since y has infinite length
the geodesic differential equation on 7" ensures that close initial tangents provides for
close initial segments. It further follows that initial segments of pg and pg* are close.
The considerations are summarized with the following.

‘Theorem 4.3. In T the infinite length geodesic rays and the rays to maximally noded
Riemann surfaces each have initial tangents dense in each tangent space.

Brock discovered that the situation for finite rays is different: convergence of initial
ray segments to finite rays does not provide for convergence of entire rays [Bro02],
(Wol03, Sec. 7]. Rays approximating a finite ray can behave in a special way. At this
(ime an additional question is to understand infinite rays asymptotic to a stratum.

As our second application we present a construction for asymptotic rays. Begin
with the Teichmiiller space 7" for a surface with n > 0 punctures and 4 the axis for
it pseudo Anosov mapping class. The existence and uniqueness of a pseudo Anosov
axis was first established in the work of G. Daskalopoulos and R. Wentworth [DWO03,
‘Thm. 1.1]. In [Wol03, Thm. 25] the result was also obtained as an application of the
classification of limits of geodesics and the general study of translation length [BH99,
Chap. I1.6). Let {R'} be the family of marked Riemann surfaces forming the axis 4
and R” a particular Riemann surface with n punctures. We view {R'} as a surface
bundlc over A4 and R” as a bundle over a point. We introduce a formal bijective
pairing of the punctures of {R’'} with the punctures of R” and consider the sum of
surface bundles along fibers {R’} +R” as a family of marked noded Riemann surfaces.
‘T'he nodes are the paired punctures. For g the formal genus of the family let 7 be the
‘Teichmiiller space of genus g surfaces with the length function ¢ = {5, +--- + £,



242 Wolpert 3

-::_i
defining the stratum § containing {R'} + R” (the nodes have [ree homotopy classec
o, ..., 0p). Further let Y (reducible and partially pseudo Anosov) be an element of th(
mapping class group for 7" given as a sum of the pseudo Anosov (for {R'}) and tlw-
identity (for R”). The mapping class ¥ fixes ¢, .. .,Q, and the action of y extends to, :

with the extension acting as the product of the pseudo Anosov on 7’ and the 1dent1t@?
on T(R"). 5

We proceed and describe the construction of a geodesic ray in 7 asymptotic to 3‘5
First observe that the relative systole is periodic along 4 and consequently that sys,4
is bounded below along A by a positive constant c. It now follows from the grad1e§
bound (3.3) that there exists a positive constant 8 such that any surface R of 7 clos
in 7 to {R'} + R” than § satisfies 0 < £o; <c/3 and for B # a,..., 0 (or a power
an a.;) then £g(R) > 2c¢/3. In particular the only short primitive geodesics on such i
R are 0, ...,0,. We are ready to form the candidate ray asymptotic to § by a limiti
process. For a sequence of points along {R'} + R” tending to forward infinity, connec§
the reference point R by a WP geodesic to each point of the sequence. The point
in 7 has relatively compact neighborhoods and consequently we can select a conv
gent subsequence of the connecting geodesics. Denote the resulting limit as G. We
will verify that the limit is an infinite ray. We are interested in the behavior of thred
functions on G: £q,, dwp( AR'}+R") and dwp( ,S). On each geodesic connectlng
to a point of {R'} + R” cach of the functions is convex (see the above on orthogonalg
projections). Further each function vanishes at the far endpoint of each connectin%
geodesic. It follows that each function is strictly decreasing on each connecting geo-;
desic and consequently that each function is non increasing on the limit G. Now the;
classification of geodesic (with lengths tending to infinity) limits provides that either:%
a limit is an infinite ray or at a fixed distance from the bascpoint: the limiting raysfi
successively approach and then strictly recede from a stratum [Wol03, Prop. 23]. As§
already noted along G the only possible small geodesic-lengths have non increasing;
length functions: the second limiting behavior is precluded and consequently the limité
is an infinite ray.

We will now show that £, and dwp( ,5) tend to zero along G. For this sake
consider Aj5: the points in 7 at distance at most & from {R'} + R”. The closed set
A is stabilized by the action of the mapping class 7, as well as by the Dehn twists ;
about o.;. Since the only possible short primitive geodesicsf for a surface in Ajg are
Qi,...,0, it can be shown that the quotient of A by the action of the group generated
by 7y and the t; is compact. Now for a sequence of points along G tending to infinity
consider the associated sequence of forward direction rays. Since the quotient A
is compact we can select a convergent subsequence of rays translated by appropriate
compositions with powers of y and the 7; [Wol03, Prop. 23|. The resulting limit is
a geodesic Go in As. Since £g;, dwp( ,{R'} +R") and dyp( ,S) are non increasing
along G, each function has a limit along G and consequently each function is actually
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vonstant on Go. In particular cach o, is constant on Go; Theorem 3.1 provides that
cih lo; vanishes on Go. It further follows from Theorem 4.1 that dwp( ,S) vanishes

un ¢y and thus that G is asympiotic to S, as proposed. Finally in closing we note
that if the Teichmiiller space T (R") is not a singleton then the product T (R') x T (R")
vonlains Euclidean flats and vy stabilizes parallel lines {R'}+R", {R'} +R"'. We expect
lamilies of asymptotic rays in this case.
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A proof of the Ahlfors finiteness theorem

Albert Marden

I. Introduction

‘T'he modern theory of hyperbolic 3-manifolds began with the Ahlfors Finiteness The-
orem. It states that the quotient Q(G)/G of the ordinary set of a finitely generated
Kleinian group G is a finite union of surfaces, each of which is a closed surface with
al most a finite number of punctures and cone points. We will formally state Ahlfors’
(hcorem in §4. His 1964 proof [Ahl66] involved delicate analytic estimates for au-
tomorphic forms. In his enthusiasm, he forgot to rule out the possibility of infinitely
many triply punctured spheres (or triangle groups more gencrally). The omission was
soon rectified both by Bers [Ber67] with further analysis of the forms, and more el-
cgantly by Greenberg [Gre67] using a lemma akin to Selberg’s lemma. See [Gre77]
and [Kra72] for expositions of these proofs. As the theory of hyperbolic manifolds
developed around 1970 it was recognized that much of the proof can be carried out
more simply and naturally using topological considerations [Mar74]. The topological
approach was completed when the theory of the compact core and relative core was
brought in, first by Kulkarni—Shalen [KS89], and then in its full implementation by
I'cighn-McCullough [FM87]. What then remains to do for the proof of Ahlfors’ the-
orem is to rule out boundary components of the 3-manifold being topological disks or
more generally bordered Riemann surfaces.

In the wake of Sullivan’s proof of the no wandering domain theorem [Sul85] the
whole shebang, especially the analytic part, became greatly simplified. The process
began with Sullivan himself [Sul85], and continued with Bers [Ber87], and recently
Kapovich [KapOl1, pp. 110, 206-210].

The proof! set out below was developed at the 1986 MSRI conference on complex
analysis. Motivated by Kapovich’s recent proof, we have decided to put ours out for
public view as well, The overall pattern is the same as the other proofs, starting with
Sullivan; the difference is in the simplicity of the details.

The proof we will give is based on ILN. Baker’s proof [Bak84, Thm. 6.1] of a
“no wandering domain theorem” for itcrations of certain classes of entire functions.
It depends on some basic Teichmiiller theory, and some knowledge of fuchsian and
Kleinian groups. Beyond this, it is fairly elementary.

I'Thanks to V. Markovic and the referce for useful comments.
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An alternate path to Ahlfors’ theorem has become available through the recently’
announced confirmations of the Tameness Conjecture for hyperbolic 3-manifolds by
Agol [Ago04] and then by Calegari—Gabai [CG04]. Tamencss implies Ahlfors’ the#’
orem, although a proof via this route is surely overkill and obscures the natural de-a
formation explanation. What it does clearly expose is that the Finiteness Theorem n{‘
its entirety is mandated by the inner topological/geometric properties of hyperbohdf
manifolds. i

2. A basic lemma

SR G A . e

We will use a simple but useful fact inspired by a lemma of Baker.

Lemma 2.1. There exists K > 1| such that if F is any K-quasiconformal mapping o
S? that fixes 0,1, 00, then

1
F(z)—2| < 5, forallzwith|g <1,

Corollary 2.2, If F fixes instead {, T, oo, then

A e i et v R R I

F@)—2l < gl ~, forallzwith|e— | < ¢/,

!
#
Progf. The Corollary is a renormalized form of the Lemma. The Lemma is prov :f
by a normal family argument. The family of K-quasiconformal mappings of S? ﬁxia
three points is a normal family. Therefore every infinite sequence has a uniforml)_a
convergent subsequence. Any limit function is again a K-quasiconformal map of 823
By taking K sufficiently close to one, we can ensure that the inequality is satisﬁed%g
For a sequence of the K,,-quasiconformal maps with X, > 1 would converge to thej
identity. 0

3. Mappings homotopic to the identity

i

The following result is central to our proof (compare with [EM88]). It is what ensures.
that lifts of certain maps of a region (typically with fractal boundary) to its universal
cover D extend to pointwise fix dID.

Proposition 3.1. There exists K > 1 with the following property. Suppose that

o U C Cis either simply connected # C, or is infinitely connected without isolated
boundary components.

» F:C — Cis a K-quasiconformal mapping with the properties.
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(i) F fixes every point of dU.
(ii) The restriction Fy of F maps U — U, and

(iii) is homotopic to the identity in U.

tetn:D = {z:|z] < 1} — U denote either a Riemann map to U or projection from
the universal cover of U depending on whether U is simply connected or not. There
evists a lift F* = ! o Fy om of Fy such that the extension to oD of F* : D — D fixes
every point on oD.

I’roof. Recall that a quasiconformal mapping D — I extends to dDD so as to become
2 homeomorphism of the closed disk.

Step 1. Let I" denote the fuchsian group of cover transformations where we allow
I'={id} if U is simply connected. A map F : U -— U is homotopic to the identity il
and only if? it has a lift F* that satisfies

F*oT(z)=ToF*(z), forallzeD, TeT.

Since F and hence F* are quasiconformal, F* has an extension to the closed disk
i) which is a homeomorphism. It necessarily fixes every fixed point of I" and by
continuity fixes every limit point of I".

Therefore if the limit set A(I") = dD, we are finished. So assume this is not the
case.

Step 2. Let I be a component of dD \ A(T"). It is an open interval with the property
that T(I)NI =0 forall T € I, T #id. For suppose this were not true so that 7(I) N1 #
 for some T € I". Then T would have to map [ onto itself, in which case T would fix
its endpoints. If this were the case, / would project to an isolated boundary component
of U, contrary to our assumption in the non-simply connected case.

Choose a closed subinterval Iy C I.

Let 6 C D be a circular arc between the endpoints of Iy. We can choose ¢ so close
to Ip that the region X C DD, bounded by ¢ and Iy, has the following properties:

e T(X)NX =0forall T €T, T #id.

¢ The axis of no element of I" penetrates X.

The assumption that no boundary components of U are isolated implies that all
clements 3£ id of I" are hyperbolic.

2The necessity is a consequence of lifting the homotopy. The sufficiency comes from taking F*(z) to be
Ihc point of distance L, along the geodesic arc of length L, from zto F*(z),0 <+ < 1.
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Before moving down from D to U, recall that an ideal boundary component of
U is defined in terms of an equivalence class of nested sequences of connected open
sets that nest down on the component. Nested sequences for different ideal boundary
components are eventually disjoint from each other. In fact, given two ideal boundary
components, there is a simple geodesic in U that separates them.

Now 7t : X — (X) C U is an embedding. We claim that there is an ideal boundary,
component J of U such that any sequence {z,} C X that accumulates to Iy projects to:
a sequence {7(z,)} C ®(X) that accumulates to J. For suppose to the contrary that the:
sequence accumulates to two ideal boundary components of U. There is a geodesic;
o, C U that separates the components. A lift of o0 would nccessarily penetrate into X, } ,‘
contrary to our choice of X.

Furthermore, the ideal boundary component J cannot reduce to a single point 111;l
S?, since the conformal embedding 7 of X cannot send the interval I to a single point.’
One way of confirming this is in terms of the bounded harmonic function on X w1th§
boundary values O on /p and 1 on G. It projects to a bounded harmonic function i 1n

-

w(X). If m(ly) were a single point, the projected bounded harmonic function would
have boundary values 1 a.e., and would necessarily be a constant. s

Therefore the euclidean diameter of J is not zero. We may thus make X smaller 1f,.;;
necessary so that the following holds for the euclidean distance d,: }i

1
d,(n(z),0U) =d,(n(z),J) < Ediam(J), forallze€ X. ;
s
Given z € X, let { € J be a nearest point to 7t(z). We can find another point {’' € J
such that

Im(z) - &l = &' = &. :
There is such a point, for otherwise the diamecter of J would have to be less thanl‘
2d,(n(z),J).

We are finally in a position to apply Corollary 2.2 to a K-quasiconformal F(z) with
fixed points {,’, . Here K must be chosen to satisfy Lemma 2.1. We then find that
for our choice of z€ X,

|F(n(z)) - =(z)| < de(n() U), 3.1

since |n(z) — §| = d.(n(z),0U).

Step 3. Given two points a,b € U, let [a,b] denote the shortest hyperbolic distance
between them. Let dj (-, -) denote hyperbolic distance in .

Corresponding to our point 7 € X, find 7, € I" with the following property. Among
all points in the I"-orbit of F*(z) in D, T,(F*(z)) is a closest point to z in the hyperbolic
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metric. Then,
dll(szzF* (Z)) = [ﬂ(z),FTC(Z)]. (3.2)

Consider the disk
A={weU:|w—-mr(z)| <d.(n(z),0U)}.
I'rom equation (3.1), we know F(n(z)) C A. Moreover,
[7(2), Fr(z)] < da(n(2),F(n(z)) < log3. (3.3)
llere da(-, -) is hyperbolic distance in A and log3 is the hyperbolic distance in A from

the origin to a point halfway to the boundary. We are thus using (3.1).

We now want to apply (3.3) to any choice of z € X. We can do this, because once
K is prescribed, each allowable F fixes all points of dU. Hence (3.3) does not depend
on the z-dependent choices of {,{’ on the boundary component J of U.

We can therelore conclude that for any z € X, there exists 7, € I" for which,

dn(z, T,F*(z)) < log3. (34

Step 4. Let now {z,} C X be a sequence with limit point p € Iy. Denote the
corresponding scquence of elements of I by {7, = 7;,}. The sequence of values
{F*(z,)} converges to F*(p) since F* extends continuously to dD. In view of (3.4),

dn(zn, TuF*(2n)) < log3. 3.5)

Suppose first the sequence {7, } has infinitely many distinct elements. Since I is
discrete there is a subsequence {7,,} which converges to a constant ¢ € A(I"), uni-
formly on compact subsets of DU (0D \ A(I")). In particular lim 7,,F*(z») = c. But
limgz, = p, while ¢ ¢ Iy since it is a limit point. We have a contradiction to (3.5).

We conclude that the sequence {7,,} contains only a finite number of distinct ele-
ments. We may then assume all the elements are the same transformation T € I". Once
again we bring in (3.5) and see that we must have p = limz,, = TF*(p), or

F*(p)=T"'(p). (3.6)

So far in our analysis, T depends on p € Iy. But F* is a homeomorphism of dD
while I' is discrete. Therefore Equation (3.6) holds in a maximal subinterval of Iy
which is both open and closed. The conclusion is that T' satisfying (3.6) holds for all
points on the interior of Iy, then for all points on the interior of the original interval
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I, and by continuity the endpoints of / as well. As we found in Step 1, the endpoints
q1,q> of I are fixed points of F*. This makes them fixed points of 7" as well. The only
possibility left is that T =id.

We conclude that F*(p) = p for all points p € I and hence for all points p €}
aD. .

4. Deformations

Suppose R is an arbitrary hyperbolic Riemann surface with possible border dR. Rep-.
resent R in its universal cover D, R = D/I". The border is then represented as 0. =
(@D \ A(I"))/T". In addition to a possible border, R may have isolated ideal boundary
points which are called punctures. ;
The Teichmiiller space T(R) is the space of pairs {(S,f)} where f:R— S 1s§
quasiconformal, subject to the equivalence (S, f) = (Sy, f1) ifand only if fiof~!:§ —#ﬂ
S is homotopic to a conformal map in such a way that the border remains pointwi
fixed. (The maps f automatically extend to punctures.) The Teichmiiller space is £
complex manifold. We take as the origin the equivalence class of (R,id). j

The Teichmiiller space is infinite dimensional if and only if the vector space Q(R),
of quadratic differentials ¢dz* with bounded norm on R has infinitc dimension. Hereﬁr

loll = [ [ Ioldxdy <

A maximal Riemann surface is one that cannot be properly embedded in a largexg
surface in such a way that the inclusion of fundamental groups is an isomorphisms
In particular this means that the surface does not have a border. For example, the

T e

o S5 A o e 3 i T

complement in C of the Cantor set is a maximal surface. Equivalently, a maximak
Riemann surface is one such that the limit set of its fuchsian covering group in D 1§

¥
aD. |

-1

Thus if R is not maximal and/or has infinite topological type, T(R) is infinite di-
mensional. The following statement is well known in the field.

SV N -

Lemma 4.1. Suppose R is a Riemann surface which is not maximal and/or is of in
finite topological type. Given any integer N > 0, there is a complex dimension Ng

submanifold V of a neighborhood containing the origin in T(R).

A quasiconformal deformation of R is a quasiconformal map R — S. Two maps;
f, fi are equivalent if there is a conformal map g such that f] = g o f. Thus under the
hypothesis of Lemma 4.1, each 6 € V corresponds to a quasiconformal map fs : R —
S. Different choices of ¢ € V result in inequivalent quasiconformal maps. Furthermore
the maps f depend holomorphically on 6. Here fy = id.
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5. Ahlfors’ finiteness theorem

Suppose now I' is a Kleinian group with limit set A(I') and complementary set of
discontinuity Q(I"). The corresponding 3-orbifold and its boundary, which may be
emply, is

M(T) =H}uQ)/T, M) =Q()/T.

Ahlfors’ Finiteness Theorem. If U is finitely generated, then M (') has at most a
fmite number of components. Each component is a closed Riemann surface’® with at
most a finite number of punctures and a finite number of cone (branch) points.

Not included in the statement of the theorem are the facts (i) there are at most
u finite number of parabolic conjugacy classes in G and (ii) there are at most a fi-
nite number of conjugacy classes of finite subgroups. For parabolic and elliptic fixed
puints are not always detectable in M (I). Proofs of (i) are contained in [Sul81] and
{1:'M87], and a proof of (ii) is in [FM91].

The topological method is also well suited to give bounds on the Euler character-
istic, etc., of the boundary in terms of the number of generators of I

According to Selberg’s Lemma, there is a torsion free normal subgroup I'lp C I
of finite index. This means that M (Iy) is a finite sheeted, regular cover of M (I").
‘Therefore it suffices to prove the theorem for I'y. Consequently we can assume that I"
itself contains no elliptic elements.

If the conclusion of Ahlfors’ theorem were false, then some boundary components
would have an infinite dimensional space of deformations. On the other hand, since
1" is finitely generated it can have only a finitely dimensional space of deformations:
think in terms of varying the entries in the generating matrices. The strategy of this
and all proofs is to derive a contradiction from this state of affairs.

However any proof by counting parameters, including Ahlfors’ argument, is bound
1o be unable to deal with the following eventuality. Namely the possibility of 9 hav-
mg infinitely many triply punctured spheres as components. For all triply punctured
spheres are conformally equivalent and hence have no deformations at all. Instead of
i deformation argument, a separate argument is required to rule out this possibility.
As mentioned earlier, the most beautiful and elementary of these is the argument of
[.con Greenberg [Gre67]. In the proof below, we will assume that this case does not
arise.

P’roof. Step 1. Suppose the group I' = (T,...,Ty) has N generators. The matrix in
SL(2,C) corresponding to each generator depends on 3 complex entries. Therefore

*A closed surface is one which is compact, without boundary.
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I" depends on at most 3N complex parameters; it will actually be fewer in particus
lar because there are likely various relations in T, including one that arises for each
parabolic conjugacy class.

We want to prove that each boundary component R of M (1) is a closed surface
with at most a finite number of punctures.

Suppose to the contrary that this is not true of a component R. Apply Lemma 4. 1'
to find an 3N + 1 dimensional submanifold V of a neighborhood of the origin of ‘I(R)
Each point ¢ € V corresponds to a quasiconformal deformation f5 of R.

Step 2. Before proceeding we will move up to S?. Fix a component Q ¢ Q(l")i

lying over R. Thus R = ©/Stab(Q) with Stab(Q) = {T € T': T(Q) = Q}. f
H

Consider the Beltrami differential of foon R, 6 €V, “

3

o 4

oo’

Denote its lift to Q by ys. According to deformation theory, ug is holomorpic in Oy
uo —= 0. It automatically has the invariance B

~
~
—
&
~—

,JG(T(Z)),:, =ps(z), forall T € Stab(Q), z € Q. (5.1);

~
—~

~N
~—

We can extend each us from € to the full I'-orbit of € in such a way that (5.1) is.
satisficd for all clements of I' and points {z} of the orbit. Then extend the resulting.
U to all $? by setting us(z) -~ 0 whenever z is not in the Q-orbit. The invariance (5. 1)‘:
then holds for all z € $2.

Now solve the Beltrami equation 0Gg — ts9Gg on S%. The solution Gy is a qua-
siconformal map of S2. It is uniquely determined if we impose the normalization that
0,1, 0 are to be fixed. In particular Gy = id. The invariance condition (5.1) implies
that for each o, there is an isomorphism 84 : I' — 85(I") with the property

GsoT(z) ~05(T)0Gs(z), forallT €T, z€§°. (5.2)

The image group 85(I") is another Kleinian group. In particular 8y —

The quasiconformal mapping Gs is conformal on the interior of the complement
of the T-orbit of Q. The restriction of the family {Gs} to  projects to a family {gs}
of deformations of R with gy - - id. Each g5 solves on R the same Belirami equation
as our original fs. Therefore go = hg 0 fo where kg is a conformal mapping of the
surface fs(R) — go(R).
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Step 3. Consider the map
ceV i (85(Th),...,06(Ty)) C PSL(2,C)V.

The entries of the normalized matrices of the generators 85(7;) are holomorphic func-
lions of 6 € V. That is, we have an analytic map of V into a ncighborhood of the
wlentity.

By the implicit function theorem, there is a complex 1-dimensional section ¢ =
o(s) of V, with 6(0) = 0, such that

0(T)=T,0=0(s),seD={s:|s) <8}, 1 <i<N.

Because the {7;} are generators of I, 05(T) =T for all T € I, where 6 = o(s)
with s € D. The relation (5.2) then implies that G fixes each fixed point of 7', for all
T ¢ T. Since the fixed points are dense in the limit set A(I), by continuity G¢ fixes
cach point of A(T). This is true for all 6 = o(s), s € D.

In particular, G, fixes each boundary point of the component Q C Q(I).

Now we bring in Proposition 3.1. After further restricting § if necessary, we may
assume that G5(Q) = Q for all 6 = 6(s), s € D. Upon restricting § even more if
necessary, we may assume that each Gy is K-quasiconformal with X given by Propo-
sition 3.1.

Take the universal cover (or Riemann map image if Q is simply connected) of
€ to be D. This is also the universal covering of R = Q/Stab(Q). According to
Proposition 3.1, each Gg, 6 = 6{s), has a lift G : D — D which extends to the identity
on dD. But this in turn implies that cach G} induces the identity deformation of the
fuchsian covering group of R. This is a contradiction.

We can now conclude that cach component of 9M () is a closed surface with at
most a finite number of punctures.

Almost the same argument shows that 9 (1°) cannot have more than 3N compo-
nents which are not triply punctured spheres. For each such component has at least
a [-complex parameter family of deformations, and deformations of separate compo-
nents are independent of each other, O
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Abstract

In terms of the presentation of a Fuchsian group I'' of genus two, we give an
expression of the Riemann surface H? JT as a hyperelliptic curve. We describe
branched points as functions of the presentation of I i.e. functions on the Teich-
miiller space of genus two. In this procedure, we construct a I'-automorphic func-
tion on the upper half plane H? which is analogous to the WeicrstraP g-function.
1.Kra’s algorithm of the construction of non-vanishing Poincaré series is the key
tool for the construction of this automorphic function. Making use of our results,
we can construct Teichmiiller modular functions for the case of genus two as the
case of the elliptic modular function.

1. Introduction

l.et I" be a marked Fuchsian group of genus two, a presentation of a Fuchsian group
of genus two
2
[:={(ay,b1,a2,b2 | H[ai,biD C PSL.(2,R)

i=1
where [a;,b;] := a;bia, 'b,ﬁl is the commutator of a; and b;. Then the quotient space
1i* /T of the upper half plane H? by I' is a compact Riemann surface of genus two.
Because every compact Riemann surface of genus two is a hyperelliptic curve i.e. a
branched double covering over the Riemann sphere P!(C), there exist five complex
numbers gi,--- ,gs € C such that H? /T can be written as a hyperelliptic curve

5
Y=T]x—-q)
i=1
where we note that the point at infinity oo € P! (C) is also a branched point. The main
purpose of this paper is to describe the set of branched points {g;} in terms of the
presentation of a Fuchsian group T
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To explain how to attack this problem , we first review the same problem for the
case of genus one, an elliptic curve. Let L = Z - + Z - 0, where ®, 0, € C with
Im(®; /o) > 0 be a lattice acting on the complex plane C by the parallel transform

CxL — C
(zzm-o+n-ap) — z4+m-O+n-o

where m,n € Z. Then the quoticnt space C/L is a compact Riemann surface of genus§
one and has an expression as an elliptic curve !

i
3

?1

H(x ql “s,

i=1 i

§

where o € P!(C) is also a branched point. We can write down the set of branchedg

points {g;} in terms of the generators ®; and ®; of L as follows. 1

First of all we construct a discrete subgroup G of the C-analytic automorphlsm
group Aut(C) of C containing L as a subgroup of index two and C/G is 1somorph1c4
to P1(C). In practice G can be constructed from L by adding the involutive element L”‘
of Aut(C) defined by 1(z) = —z. In this case the set of half periods {0, %, %, 21392}
is the complete set of representatives of G-fixed points of C, where z9 € C is calledd
a G-fixed point if there exists a non-trivial element g € G such that g(zp) = zo. Be-
cause C/G is isomorphic to P!(C), the field of G-automorphic functions on C i.e. thel
field of meromorphic functions on C invariant under G, is isomorphic to the field ofg
rational functions of one complex variable. Moreover it is naturally isomorphic to the}
meromorphic function field of C/G. Hence next we find a generator h(z) of the field:
of G-automorphic functions on C satisfying h(0) -= oo, In this case we can take the
WeierstraP g function

1 1 1
w0 =3+ L {eoro)

weL—-{0}

Al asis‘.«..gaiﬁvﬂ_mz s

as a generator of the field of G-automorphic functions on C. Consequently we get a
presentation of the Riemann surface C/L as an elliptic curve

= - p( ) - o ) - o 1)),
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‘The next diagram shows the process ol the above argument

C
!
C/L
| \\ double covering
C/G 2, PL(C).

In this paper we will follow the same procedure for the case of genus two

H2
!
H?/T
l N\, double covering
H/G N P'(C).

More precisely, in section two we will construct the Fuchsian group G of genus zero
which contains I" as a subgroup of index two. In practice we will get a presentation of
(i as a Fuchsian group of genus zero

G= (Yl',"'y’yﬁ |V%==y% ='Y]’Yz...»y6>.

et p; € H? be the fixed point of y; € G in H2, then the set {p;} is the complete set of
representatives of G-fixed points of HZ. In section three, we will show that a generator
Ii of the field of G-automorphic functions on H? satisfying #(ps) = e can be written
by means of Poincaré series for G of weight 6 as follows

| Ty PRV
M= =y PITEP

where P is a rational function holomorphic on H? and P(pg) # O . Here the order
formula of G-automorphic functions on H? is the key idea and to explain it, expository
parts of this section became a little bit long. This function & is analogous to the
Weierstraf} g function for the case of genus one. In this case, the main problem is to
show the non-vanishing of the denominator of the expression of A i.e. to find a rational
lunction P(z) which gives a non-trivial Poincaré series ¥ye P(Y2)Y (z)*. We will solve
this problem by the work of I.Kra [Kra84] about the vanishing of Poincaré series and
will review his argument in section four. We call his algorithm of the construction
of non-vanishing Poincaré series Kra’s algorithm. And finally we will find such a
rational function P(z) explicitly in section five and consequently get the expression of



H? /T as a hyperelliptic curve

5
=[G~ n(p).

i=1

This is the outline of this paper.

t

Let’s review the case of genus one once again. After the normalization of the lat-;_
tice L with L= Z-t+7Z- 1 where T € H2, we can consider {g;(t)} as functions on|
the Teichmiiller space H? of elliptic curves. Morcover from these functions {g; (T)},L
we can get the A-function A(t) and finally construct the elliptic modular function J (‘l:)
whose theory has been one of the most fascinating part of the complex function the—f
ory and still now on. My primary motivation is to construct the theory of Teichmiiller;
modular functions for the case of genus two and the result of this paper should be aé
starting point of this approach. In practice jointing with the work of Igusa ([Igu60}),: ‘
we can construct Teichmiiller modular functions on the Fricke space i.e. the Te1ch—-

miiller space of genus two. i

Finally I would like to thank my supervisor Kyoji Saito for providing me w1th ]
many ideas and remarks during the course of this work.

2. Construction of the Fuchsian group G of genus zero

Let I be a marked Fuchsian group of genus two ;

2
T'={ai,b1,a2,b2 | [[lai,b:]) € PSL(2,R).
i=1
The hyperbolic axis of a| and that of b, intersect in the positive sense with respect :
to the orientation of 2, where a hyperbolic axis is oriented from the repelling fixed
point to the attractive one. Then the configuration of the axes of a;,b; and ¢| :=[ay,b;]

on H? (i=1,2) is shown in Figure 1 where we consider these axes in the unit disk D
([Kee71)). :

'%
Fori=1,2, let z; € H? be the intersection point of the axis of a; and b;, and §; €
PSL(2,R) be the elliptic element of order 2 whose fixed point in H? is z;.

Proposition 2,1. The group G generated by T and 8, is a Fuchsian group of genus |
zero containing I" as a subgroup of index two.

Proof. First we show that G has the coset decompostion

G=Trury,

T 3 e e s e



Figure 1: The configuration of the axes of generators of I'.

which implies that I" is a subgroup of index two in G. For i = 1,2, define o;,B; €
PSL(2,R) by

a = ;-9
by = B;-6.
‘Then we can check that o, 3; are also elliptic elements of order two.
From the definition of o, ; and §;,
a;6; = 8,~a[_1, ai—18,~ = §;a;,
b:; = &b, b718; = 8ib;.
Moreover the commutator relation ]’I,-2=l [ai, b;] reduces

©181B1 = B28202

which implies
&, = a{lbz‘lalbl&.

Hence any element of G which is a finite word of elements of I" and 8; can be written
as either y or ¥ where y& I

Next we show that G has a presentation as a Fuchsian group of genus zero. It is
casy to check that o;,B;,8; (i = 1,2) are generator system of G and satisfying the
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following relations
o =8 =PpF=id (i=1,2)

-8By 028 Br=1id. (2.1)

Hence it is enough to show that any relation can be reduced from these relations.
But we already knew that any word of G can be written as either y or Y8, by means of
these relations. Suppose that Yis trivial. Then it must be deduced from the commutator
relation [T2, [a;, b;] which is equivalent to the relation 2.1. Supose that v is trivial,
Then y must be equal to 8; which contradicts to the fact that I' is torsion-free. a

Corollary 2.2.

(i) Define
Y=o =0 Y:=p
Ya:=0 Y5:=8 7Y6:=Po.

Then G has the presentation of a Fuchsian group of genus zero
=MW R = =B =N %)

(i) Let p; be the fixed point of ; in 2, then the set {p\,--- , pe} is the complete set’
of representatives of G-fixed points in H2, '

Remark 2.3. In practice {p1,---,pe} are half-periods in hyperbolic sense; the fixed'
1 1 !
points of o; and P; in H? are a? (z;) and b7 (z;) respectively, where a? € PSL(2,R) is ,
1
the square root of g; i.e. the unique element of PSL(2,R) with (a7 )? = a;. '

3. Construction of a generator of the field of G-automorphic func- -
tions on H?

In this section, we will show that a generator of the field of meromorphic G—automorphid
functions on Hi? can be written by means of meromorphic G-automorphic forms of
weight 6. For this purpose, we first review the relation between the G-automorphic i
forms of weight 2k on H? and the k-th differentials on the Riemann surface H?/G |

l
when G is a cocompact Fuchsian group in general.

Definition A G-automorphic form of weight 2k (k > 0) is a meromorphic function
f(z) on H? which satisfies the following identity

Flag! (@)t = 1(2) where g() = 2 (o) |

for g € G and z € H?,
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Definition For a local chart (Uy, @u)oca of the Riemann surface § = H?/G, the
vollection {fg}qea of the meromorphic functions fo on Qo (Ug) C C is a k-th differ-
cntial on S (k > 0) provided that it satisfies the transformation law defined by

fo=f3o0005" - ((9p00g") )

on @ (Ua NUg) if UsNUp # §. Let tq be the coordinate on 9q(Uy). Then the above
¢yuation can be written as

falta) = foltp)- <g£>k

From the definition, O-th differential on S is nothing but a meromorphic function on
S and the product of m-th, and n-th differentials is a m+n-th differential. Moreover the
set Qi (S) of k-th differentials on S is a 1-dimensional vector space over K{S) := Qq(S)
the field of meromorphic functions on S. For @ € (S), the order of @ at p € S is
independent of the choice of a chart Ug, and we denotc it by v,(®). Moreover since S
s compact, (@) := Y., Vp(®) - pis in fact a finite sum and put deg(®) := ¥ ,c s Vp(0).
Then the theorem of Riemann-Roth tells that deg(®) = k(2g — 2) where g is the genus
of S.

Now we will see the relation between the G-automorphic forms of weight 2k and
the k-th differentials on S. First, let f(z) be a G-automorphic form of weight 2k. For
. ¢ H2, we assume 7(z) € Uq(C §) where m: H? — § = H?/G is the projection. Then
the meromorphic function fi; on @g(Uq) defined by

f2)
n(z)) :=
Ja(@o07(z)) (eom) (2)F
is well defined and the collection {fy}4c, is a k-th differential on S. We write this
differential by m, f. Conversely let @ = { fu}oc4 be a k-th differential on S, then the
lunction f(z) on H? defined by

f(@) = fa(9a0m(2)) - (9o 0m)' (2)* (z € H?)

15 well defined and a G-automorphic form of weight 2k. We write this by ©*®. Then
n, and ®* give the isomorphism between the set of G-automorphic forms of weight 2k
and the set of k-th differentials on S, i.e. T om, = W, 0" = id.

Hence if we write a G-automorphic form f(z) like f(z) = m*® and denote the order
of the isotropy subgroup G, := {g € G|g(p) = p} of G at p € H? by n,, the order
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V,(f) of {(z) at p € H? can be written as

Vp(f) = np Vo) (fao9a) +k-vy((Paom))
np - V() (@) +k(n, — 1)

lth(p) GUq cS. 1

Next we apply the above formula for the case that k=3 and G dcfined in Sectioni
=Y = ==Y = id). :

Let f(z) be a G-automorphic form of weight 2 x 3 = 6. Bcecause the order of th;

isotropy subgroup G, of G at p; € H? wherc py is the fixed point of v in H2, is 2 and
the genus of H?/G is 0, we have

ol

Vpk(f)ZZVn(pk)(TC*f)-i-?) (k=17""6) @3
deg(m.f)= Y, Vp(r.f)= €
peR?/G

From 3.1, vp, (f) is odd. In particular, if g(z) is a non-trivial holomorphic G-automo
form of weight 6, then because of 3.2, the zeros of g(z) is precisely equal to the
orbits of {pr} (k=1,---,6) and all of them are simple zeros. Hence if such g(z}t
exists (and in fact we can check the existence of g(z) by using the dimension formuld
of the space of holomorphic G-automorphic forms of weight 6 ([Shi71] Chapter 2 "
2.6.), it is unique up to constant multiple.

On the other hand, let f(z) be a meromorphic G-automorphic form of wc1ght é
whose poles are only simple poles at the G-orbit of ps. Then V(T f) = 3 J

—2, hence by using 3.2, the type of the configuration of the zeros of f(z) is one of thy
following two types.

(i) f(z) has simple zeros at the G-orbits of py,--- , ps and of g € H? which is not 2
fixed point of G and f(z) has no more zeros. In this case

Vn(pk)(n*f) = -1 (k:1775)
Vaipe) (Maf) = -2
Vag)(Mef) = L.

(ii) f(z) has simple zeros at the G-orbits of p;,---, p;, and triple zeros at the G
orbit of p;; where {i,---,is} is a permutation of {1,---,5} and f(z) has ncf
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more zeros. In this case

Vn(Pi,-)(n*f) = -1 (J:l,’4)
Va(p) (Tef) = 0
Vage) (Maf)  — 2.

I the configuration of the zeros of f(z) is of type 1, the function A(z) := T where
y(2) is a non-trivial holomorphic G-automorphic form of weight 6, has simple zeros
ul the G-orbit of g , double poles at the G-orbit of pg and h(z) has no more zeros and
poles. Therefore since h(z) is a G-automorphic function on HZ, if we consider h(z) as
the function on 2 /G, h(z) has only a simple zero at 7t(¢) and a simple pole at 7t(ps).
Similarly, if the configuration of the zeros of f(z) is of type 2, h(z) has double zeros
ut the G-orbit of p;,, double poles at the G-orbit of ps and h(z) has no morc zeros
aud poles. Therefore as the function on H? /G, h(z) has only a simple zero at n(pis)
mnd a simple pole at T(pg). Because H2/G is isomorphic to P! (C), the meromorphic
lunction field on H?/G is isomorphic to the rational function field of one compex
viriable, hence its element h(z) is a generator if and only if h(z) has only one simple
rero and pole. Morcover the meromorphic function ficld on H?/G can be naturally
wlentified with the field of G-automorphic functions on HZ2, we have just proved that a
penerator h(z) of the field of G-automorphic functions on H? satisfying h(pg) = oo can
he constructed from a non-trivial holomorphic G-automorphic form g(z) of weight 6
und a meromorphic G-automorphic form f(z) of weight 6 whose poles are only simple
poles at the G-orbit of pg.

Morcover we can construct the above f(z) from g(z) by the following well known
method ([Leh64] Chapter 5, section 2 ).

L.emma 3.1. If a non-trivial holomorphic G-automorphic form g(z) of weight 6 is
viven by the Poincaré series

=Y P(r)Y(2)*
1€G
where P(z) is a holomorphic function on FI? with P(pe) # 0, then the following func-
non f{z)

Z— —(Yz ()’

’YEG

iy well defined and a G-automorphic form of weight 6 whose poles are only simple
poles at the G-orbit of pe.

Summarizing the above arguments, we get the following result of this section.
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Prepesition 3.2. If we have a non-trivial holomorphic G-automorphic form g(z) ¢
weight 6 as a Poincaré series

g(z) = Y P(r)Y (z)°

1eG
where P(z) is a holomorphic function on H? with P(pg) # 0, then the function h(g
defined by
Yye6 e POY (2)°
Yyec P(V2)Y (2)?

is a generator of the field of G-automorphic functions on H? satisfying h(pe) = oo.

h(z) ==

S PRSI

¥

In the remaining sections, we will find a rational function P(z) holomorphic on ]I-ﬁ

which gives a non-trivial holomorphic G-automorphic form g(z) of weight 6 Qtdtedﬁ
Proposition 3.2.

»

4. Kra’s algorithm for the construction of non-trivial Poincar
ries

In this section following [Kra84] and [Kra72] mainly , we will review Kra’s algorithy i
for the construction of cusp forms of finitely generated Fuchsian groups of the ﬁr,
kind by means of Poincaré series. We will see in the next section that this algorith "
works well to find a rational function P(z) which gives a non-trivial Poincaré
described in the previous section.

4.1. Notations

We will use the following notations in this section.

G := afinitely generated Fuchsian group of the first kind
A = RU {0} the limit set of G

Q := P!(C) — A the regions of discontinuity of G.

For a function f: & — C and A € PSL(2,R),

@A NG = F(AZ)A'(2)9A7(z)" where A'(z) 1= %g(Z)

* L *
A, = Al
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4.2. The space of cusp forms on £ of weight 2q (¢ > 2)
We define the space A,(Q. G) of cusp forms on Q of weight 2q (¢ > 2) by

4,(2,G):={¢:Q—C: 1) ¢isholomorphicon .
2) Yo=9,foryeG
3) sup|Im(z)|?|g(z)| < oo}
EQ

The spacc A (2, G) has the Petersson scalar product defined by

, ——dzAdz
W= [ [ lm@P oW s

lor oy GAq(Q,G).

FFor A € PSL(2,R), AGA™! is also a Fuchsian group and Aj is a C-linear isomor-
phism from A,(Q,AGA™!) to 4,(Q,G)

AL AL(QAGATY) s A4(Q,G)

¢ A;(p .

In the following, we will construct a basis of A,(€, G) by applying the Poincaré
wcries operator to the space of rational functions R,(A) defined in the next subsection.
4.3. The space of rational functions R,(A) (g > 2)

lor ¢ > 2, we define the family of rational functions R, (A) by

R,(A) := {f(z) : rational functionon P! (C): (1) f(z)isholomorphicon Q;
(2) all poles of f(z) are simple
poles and located on A;
(3) f(z)=0(lz%*") (z > =)}

In the condition (2) above, we define the value of f(z) at z = oo by

f(ee) 1= (=1)7 lim 241 ().
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R4(A) is a complex vector space and for A € PSL(2,R), Aj delines a C-linear autos
morphism of R, (A)

A, 1Ry(A) — Ry(A)
f = Aif.

G oem At T

In particular, f € Ry(A) has (simple)poles at Avy,---,Av, € A if and only if A}f ﬁ
R,(A) has (simple)poles at vy,--- ,v, € A. ;

4.4. The Poicaré series operator @, (q > 2)

For g > 2, we define the C-linear map ®, = @, ¢ from R,(A) to A,(L, G) by

0,:R,(A) — AlQ,G)
foe O =Y 1S

YeEG

which is called the Poincaré series operator.

v, BN, o S A A R BT 5 B T e 4

Next theorem due to Bers shows that the operator @, is an important notion for th
study of cusp forms. '

LY
o

Theorem 4.1 (|Ber73]). The map @, is well defined, i.e. for f € Rg(A), Ogf converge.g
uniformly on compact subsets of Q. Moreover this map is surjective hence any cusg
form of A, (Q,G) can be written as a Poincaré series Ogf (f € Rg(A)).

et

Because dimR,(A) the dimension of Ry(A) over C is infinite, this result is nok

effective for the construction of a basis of 4,(Q,G). Quantitative improvement of thig
theorem is the following result due to Kra.

B

o il

Theorem 4.2 ([Kra84]). Fix a system of generators of G, Yo = id,Y1, - ,Yv € G, ana‘%
(2q-1) distinct points {vi} of A which are G-fixed points. Put }

S@ = {ym)€A:j=0,-- N, k=1,---,29 -1}
Ry(S(¥) := {f(z) € Ry(A): f(z)isholomorphicon A —S(¥)}

(i.e. dimR,(S(¥)) < (29— 1)N). Then the restriction of ®, to the subspace Ry(S(¥));
of Ry(A) is also surjective. Hence we can choose a basis of Ag(Q, G) from ©q(Rq(S(V))

Remark 4.3. In his paper [Kra84], Kra shows this theorem for a finitely generated non
elementary Kleinian group under modified conditions of {v}. Because we will use]
his result for our group G defined in section 2, we restrict his theorem to the statement
of Theorem 4.2.
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In the following we review the idea of the proof of Theorem 4.2 which leads us
1o Kra’s algorithm for the construction of non-trivial Poincaré series. For this purpose
we need to review the notions of the Eichler cohomology and the Eichler integral.

4.5. The Eichler cohomology

l'or g > 2, let Ty, 2 be the complex vector space consisting of polynomials in one
complex variable of degree at most 2g-2 (i.e. dimIly, > = 2g —1). We define the
fiight) action of G on Iy, 2 by

My 2XG — Iy o
(RY) = P-’Y::Yf»_ql’.

A mapping %, : G — Ilz,_» is a cocycle provided

X -12) =x(n) -2 +x(2) (11,72 € G).

Such a cocycle is a coboundary if there exists some fixed P € Iy, such that
x(Y) =P-y=P (YEG).

A cocycle y is called parabolic if for any parabolic element 1 of G, there exists
I’ € 142 such that

xm)=p°-n-"~

We use the following notations.

/(G,TIy,_3) := the complex vector space of cocycles for G,

B'(G, IT5,_>) := the complex vector space of coboundaries for G,
I'Z'(G,TIp,—2) := the complex vector space of parabolic cocycles for G.

T'hen the Eichler cohomology H' (G, Iy, —,) and the parabolic cohomology PH'(G,TTp,_»)
are defined by

H'(G,Iy,. 2)
PH'(G,T15,»)

Z'(G,I1-2) /B! (G,Iye2)
Pz} (G, qu_ 2)/B1 (G, qu._z).

For A € PSL(2,R), A7_, defines a C-linear isomorphism

g H'AGA™ Ty 1) — H'(G,IIyy2)
A AT_qx.
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Remark 4.4. The next mapping is isomorphic

My — BY(G,IL,)
P — x(Y)=P-y-P,YEG.

Hence _
dim BY(G,Ty,_2) =2q— 1. 3

Moreover }:
dim Z'(G,Iy.2) < (29— 1)N i

dim H'(G,Thy, ;) < (2g—1)(N-1) 2

where N is the number of the generators of G. §
4.6. The Eichler integral i
Let D C P'(C) be a non-void G-invariant set. A C-valued function F(z) on D is a;f

X(y) € TIg—2 such that
Ni-gF —F =x(¥)lp-

Then for y € G, () € 242 is uniquely determined by F and the mapping ¥, dcﬁned
by

Eichler integral for G of order 1-q (q > 2) if for Y € G there exists a polynorma]l
q
!
!
i

FEE et

%G — qu_z-
Y —~ x(v)

et

satisfies the cocycle condition. We call this cocycle the period of the Eichler mtegra
F and denote it by pdF.

The value of an Eichler integral at oo is defincd by

F(e0) := (—1)1"9 lim 22 MF(z)

if this limit exists.

.\ e B e ek R 4 = 2R Y e ~ TP S0

If F is an Eichler integral for G, A7_ F is an Eichler integral for AGA™! Ae
PSL(2,R)) and "
F(Av) =0<=A]_,F(v)=0 :

In the next section by using an Eichler integral, we can define the (C-anti—lineari
mapping B* (which is called the Bers map) from A,(Q,G) to H(G,TIy,;_5), and:
we transform the problem of the cusp forms to the problem of the linear algebra on ,

1
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1Y G Ty, 2).

4.7. The Bers map §~

tor @ € A4(Q,G), a canonical generalized Beltrami differential for G, u(z) is defined
hy

p(z) = |Im(2) 2 (z).

lior A € PSL(2,R)
Ai_g 1= |Im(2) [P A5

Ience in particular for y € G,
Yr—q,l:u =u

A continuous function F(z) on C is a potential for p if it satisfies

F(z) = 0(12*7) (z— )
9%5-2—) = p(z)
Z

in the sense of generalized derivatives. We define the value of a potential F(z) at 7 = o

by
F(eo) = (=)' lim 27 £(z)

o this limit exists. Then
F(o0) =0 4= F(z) = 0(jz[* %) (z— o).
l'or A € PSL(2,R), A’{_qF is a potential for A’{_qy and for v € P!(C),
F(Av) =0 <= A]_,F(v)=0

Next lemma is an easy consequence from the definition of a potential.

l.emma 4.5. If F| and F, are potentials for a Beltrami differential p, then Fi — F; €
! llq—Z

Therefore a potential F for u which vanishes at (2g-1) distinct points {vy} is unique
i it exists. Next theorem shows the existence of such F explicitly.

Theorem 4.6. (Bers [Kra72]) For ¢ € Ay(Q,G), the unique potential Fy for p :=
iIm(z)[*3~2@ which vanishes at (2q-1) distinct points {vi} of A can be written as
follows

(z=v1)-- vy 1) u(©)dEndE
Fole) = ——_// ﬂ>—m C=vag)
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where we introduce the convention that if vy = oo for some k, then the terms (z — v,
and (§ — v;) are dropped from this formula.

Becausc ] _ qu, is also a potential for Y;_u 4=y, Lemma 4.5 tells that v _ qF(P:

Fp € Ip4-2. Hence Fy is an Eichler integral and by using its period, we obtain o
C-anti-linear mapping §* which is called the Bers map 4
&

B*:A4,(Q,G) — H'Y(G,ITy 1)

3

¢ — [pdFy). i

u

Theorem 4.7 (Bers [Kra72]). 3,:
b

B*: 44(Q,G) = A,(H*,G) ®A,(H2,G) -+ PH' (G, T1,2) i

where BI2 is the lower half plane, is a C-anti-linear isomorphism. ‘,?;

Fix (2q-1) distinct points {v¢} of A. For A € PSL(2,R), let Fi_,(Q,AGA™") § 3
the set of the unique potentials A}__Fy for u = |Im(2)|*~2A%¢ where @ € A,(Q, G
vanishing at {A(v¢)}. Then we have the following diagram

: i

Ry(A) - Ry(A) *

O, 4641 | ) 1046 i
Ag(Q,AGA™!) A, A4(Q,G)
potential | | potential
Fl¢(Q,4GA™Y =2 F_,(Q,G)
period | | period

1 -1 A o
H'(AGA ', IIyg_2) — H(G,II-2).

4.8. The proof of Theorem 4.2

Next result is a corollary of Theorem 4.7.

Proposition 4.8. Let {v;} be (2q-1} distinct points of A which are fixed points of G

Fy be the potential for p = |Im(z)|%~ 2 vanishing at {v} and S(¥) := {¥;(vi) } whergQ

Yo =id,Yi, - ,Yv € G are generators of G. Then for ¢ € A4(Q,G),
=0 F‘PIS(D’) =0.

where Fo|s(y) is the restriction of Fy to S(V). Hence the mapping

Aq(Q,G) - Fl—q(Q,G) - Fl-—q(g7 G)IS(D')
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v« bijection. Therefore if we put d = dimA,(Q,G), then there exist Fy,--- ,F; €
h L (Q,G)and wy,--- ,wy ¢ S(V) {vl, . ,vzq_l} such that

Fi(wi) =8t (1<j,k<d).

Next proposition gives the proof of Theorem 4.2.

I'ropesition4.9. Forw € S(V {v1 )Tt sV }, we define a rational function f(w,z) €
K S( )) by

W, - i < oo
Fmz) 2nz—w ] 2=V fw
1 !
A = —_——_— ——1 [ —_— 00
Fm,2) U L=, i

with the usual convention that if v; = oo for some j then the terms z—v; and w—v; are
dropped from this formula. Then for ¢ € Ay(Q,G)

Fo(w) = (041 (w,2), 9)c-

lence because of the non-degenerateness of the Petersson scalar product ()¢ on
A,(Q,G), {@qf(Wj,Z)}j=l’.“,d is a basis of Ag(Q, G) for wy,--- ,wa € S(¥) — {vl Vot Vg-
vtuted in the Proposition 4.8.

Corollary 4.10. For wi,---,wa € S(¥) — {v1,+- ,v2g-1 } where d = dim A,(Q,G),
[, f(w j,z)}j=1 ... 4 is a basis of Ay(Q, G) if and only if the C-linear mapping

Fi_,(Q,G) — ¢
F — (F(w), - ,F(wa))

v an isomorphism. In particular for w € S(V {vl, V291 }

O,fW,2) #0< - > F(w) #0 forsome F € F. 4(Q,G).

4.9. Kra’s algorithm for the construction of a non-trivial Poincaré series

I'or the construction of non-trivial Poincaré series, we have scen in the previous sub-
wection that we need only to know whether F(w) = 0 or not for some w € S(V) —
Iy, ,v2g—1} and some F € Fi_,(Q,G). If i € G has v; € A as a fixed point and a
hyperbolic element i € G has w € (V) — {v1,++ ,v24—1 } With w < oo as a fixed point
. then we can compute F (w) as lollows. First we define the subspace VA (G,IIz4-2) of
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Z2Y(G,Tly,.-2) by
Z'(G,Ilyg2) = {x € Z!(G, Tag2) () () = 0 (k=1,--+,29— 1)}

ThenZ' (G, Ty, _,) is naturally isomorphic to H'(G,TIp,_,). Moreover pdF € Z (G,]
for F € Fi_4(Q, G) from the definition of F1_4(Q, G). Hence if w € S(¥) — {v1,- -

with w < o and a hyperbolic element 4 € G with A(w) = w, Vz:
)

pdF(h)(w) = hi_,F(w)- F(w)=F(w)(K(w)'7-1) #

_ pdE(R)(w) t

Flw) = W)= —1' ;‘g

,i
This argument shows that if there exists %, € Z' (G, ITa,_2) N\PZ!(G, Ty, _,) with x(wi
0, because such  can be written as pdF for some F € Fy_4(Q,G) by Theorem 4.%
F(w) # 0 hence @, f(w,z) # 0 by Corollary 4.10.

We call these procedure the Kra's algorithm for the construction of a non-trivilff
Poincaré series which consists of the following steps:

(i) Fix a system of generators of G, Yo = id,Y1,--- ,¥v €G.
(ii) Fix (2g-1) distinct points {v;} of A and & € G with A (vi) = v;.

(iii) Find aparabolic cocycle y € PZ!(G,Tlp,—2) withX(h)(vi) =0 (k=1,---,2q
1).
(iv) Findw e S() := {y;(m) €A j=0,-- Nk =1,---,2g =1} = {v1,--
with w < oo and a hyperbolic element h € G with A(w) == w satisfying % (k) (w)
0.

(v) Then ©,f(w,z) is a non-trivial cusp form of A,(Q,G).

In the next section, we will see that this algorithm works nicely for the case of g=3
and the Fuchsian group G of genus zero defined in section two.

5. Construction of a non-trivial Poincaré series. Main result

In this section by means of Kra’s algorithm discussed in the previous section, we il
find a rational function P(z) holomorphic on H? with P(ps) # O which gives a nong
trivial Poincaré series

Y. P(v)Y (2)’.
¥eG



On the automorphie tunctions for Fuchsian groups of genus two - 277

Let G be a Fuchsian group ol genus zero defined in section 2. For j=1.-.-.5,
sleline the hyperbolic clement /i := ;¥ where ¥y,--- e are generators of G stated
i section two , and let v; be the attractive fixed point of /;. Then the repelling fixed
point of hj is Yevj = Yjvj. Put i :=h; =16 and w := Ysv; = Y1vi. Then h(w) =w
and w € S(V) - {Vla' - ,V5}.

If we can find a cocycle € Z! (G,IL) with

X(hj)(vj) = 0 (]—:17’5)
x(h)(w) # 0

(len the Kra’s algorithm tells that

1 2 1 ]
®3(z—wjl;llz—v,») #0 in A3(Q,G).

. . . 1
For this purpose, we first assume that z = oo is a fixed point of ¢z =y;¥2Y3. Then
1 .
hecause A7 and ¢2 don’t commute, they don’t have a common fixed point. Hence

Vj<°° y 'Y(,Vj='Yjvj<°° (j=1,---,5).

In particular w = Ygv| < oo,

Lemma 5.1. There exists a cocycle y € Z'(G,I14) such that

und the zeros of X(Ye) € 14 are pg, Ps,v2 and Ygva = Yavo where pg € H? is the fixed
point of Yo and pe is the complex conjugate of pe.

I'roof. The equalities of the cocycle condition of % € Z'(G,ILy)
0=%(%) =2() Ve +A(n) (k=1,---,6)
<hows that there exist 53,8 € C (k=1,---,6) such that
X(Ve) = se(z— pr)*(z— Bu) +tlz = pi) (2 — Pr)’

llence the above equations determine 12 dimensional vector space. Because the iden-

s

x(le .. 76) =
X(r)(v))

I
)
—~—~—
L
Il
—
W
p—



are 10 lincar equations of s, 4 (k= 1,---,6), we can tind a solution {sg,%}
cocycle % € Z' (G, TLy) which satisfies

X(Y6)(v2) = x(¥6)(Yov2) = 0.

Let ) € Z'(G,T14) be a cocycle defined in Lemma 5.1. We will show that (4)(
0. From the equality

x(M1Y6)(v1)

= (x(n) Y6 +x(¥6))(v1)

= () ¥evi)¥s(v1) ? +%(¥e) (1)
= x()Mv)¥(v) 7+ X () (1)

= o)y o) =0
Y

I

x(h1)(v1)

f—

we obtain that

2n)o1) = (5 ).
Because v; is the attractive fixed point of A1 = v,Ve,
Z?E::; = |[Yi(yvi)¥s(v1)]
1) (Yov1 Y6 (v1)|

[(1¥e) (v)| < L.

On the other hand

x(mw) = xnw)¥ev) -
= (x(v1) Y6 +x(¥6)) (Yev1)
= X E)¥ev) 2 +2(¥6) (Yov1)
= X)W (1) 2 (¥6) ()% (v1)?
= {x(m)) —x(¥6) (Vi) } ¥ (n)?

{21 bt o

Because of the choice of a cocycle ¥, the zeros of X(Ys) are pg, ps € H? and vy, Yev2 =
Y2v2 € R. On the other hand # = h; and A, are not commutative,

vi # vz and vi # Yava
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wence 4 (Ye) (v} # 0. This shows % () (w) # 0 and we obtain

1 S
O3( - -
I=MvE IV

)#0

hy Kra’s algorithm.

1
Next we consider the case ¢ (o) # oo, There exists A € PSL(2,R) such that z = oo

1
I« lixed point of Ac{ A !. Then the previous argument shows that if we put

5
P(z) =
(z) z—Ay|v|jIIlz Av

then

Oy 464 1P # 0 in A3(Q,AGA™).
I'herefore the diagram

s
R3(A) = R3(A)
O304 1 1 | O3

A
A3(QAGA 1) 2 A3(Q.6)

<hows that if

Az = pZ+q
rzts
then
= F(Y1vI) 8 2 rvj+s
A3P(Z): (Yl l) j
"_'Ylvl j:l Z._Vj
rives
O3 GATP £0 in A3(Q.G).
llenee

5
Oro(— = []-) A0

'7—'Ylvl = IZ—Vj

where we use the convention that if yjvy = oo or v; = oo, then the terms z - y;v| or
v; are dropped.

Remark 5.2. Because the poles of P(z) are located on A — RU {oo},

OP(z)  O3P(2).
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Hence
3P #£0 in A3(Q,G)
implies
@3P £0 in A3(H2,G).
Summarizing the previous arguments, we conclude the main theorem.
Theorem 5.3. For a presentation of a Fuchsian group I of genus two
2
I'=(a),b1,a2,b2 | [[la:,bi]) C PSL(2,R)
i=1

let 8; e PSL(2,R) (i=1,2) be the elliptic element of order 2 whose fixed point in ]I']I2
the intersection point z; of the axes of a; and b;. And let oy(resp. B,) € PSL(2,R) (z

1
1,2) be the elliptic element of order 2 whose fixed point in H? is a7 (zi)(resp. b} (z,)
Put

J‘ﬁ AR isim LB el

YTi=0;, Y2=01, =p
ﬁ=%,%=%,%=&

and let py € H> (k= 1,---,6) be the fixed point of Y. Then the Riemann surfa
52 /T of genus two has the followmg expression as a hyperelliptic curve

5
= [TG:—hlpe))
=1
where
Yyeo «,z__{pgp (Y)Y (2)?
h(z) YrecP(12)Y(2)?
Pl) = 1 2 1

2=Vl 2V

where v; is the attractive fixed point of the hyperbolic element YjYs (j=1,---,5) a
we use the convention that if Y\vy = oo or vj = oo, then the terms z—Y1v| orz—vja
dropped from this formula.
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Boundaries for two-parabolic Schottky groups

Jane Gilman!

1. Introduction

In this paper we survey various results about the Schottky parameter space for a two
parabolic generator group and the smooth boundary for the classical Schottky para-
meter space lying inside what is known as the Riley slice (of Schottky space).

The problem can be formulated in a number of equivalent different settings: in
terms of the topology and the geometry of hyperbolic three-manifolds, in purely alge-
braic terms, or in a combination of these. Since each of these use terminology whose
cxact meaning has cvolved over time, we survey some of the basic terminology for
Schottky groups, non-separating disjoint circle groups, noded surfaces and their vari-
ous representation spaces. This is done in sections 2, 5, 3, and 4 respectively. In the
introduction (sections 1.1, 1.2, and 1.3) we state the main theorems taking the liberty
of using some terms whose precise definitions are deferred to the later sections. We
hegin with the algebraic formulation which may be the quickest way to approach the
problem.

1.1. Two Parabolics after Lyndon-Uliman

In the Lyndon—Ullman formulation, we consider two by two matrices, S and 7 where

1 0 1 2A
S—(l 1)andT-—(O 1).

We write T = 7j, to emphasize that T depends upon the complex number A. We let G,
he the group generated by S and 7j, so that Gy = (S, T73,).

In 1969, Lyndon and Ullman asked the question, “for what values of A is G, a
free group?”. They found certain regions in the complex A-plane that assured that Gy,
would be free for A in one of these regions. The regions are symmetric about the reat
and imaginary axes. The portions in the first quadrant of three of the five regions they
found, F1, F;,, F3, are shown in the diagram of figure 1.

ISupported in part by NSA grant #1G2-186 and the Rutgers Research Council.
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1 2

Figure 1: Some of the Lyndon—Ullman Free Region(s) in C.

Around 1980 David Wright wrote a computer program to plot all the points A for.
which G, is free and discrete. His picture (shown as figure 2) has come to be known;
as the Riley slice of Schottky Space although under the original definitions of Schottky.;
space it is not technically a slice of Schottky space or even a subset of Schottky space,’
but rather the quotient of a slice of Schottky space, which we will term Schottky
Parameter Space. ‘

In Wright’s plot the boundary appears to be fractal in nature, but this is not known.
for a fact [MSWO02]. Keen and Series [KS94] have studied moving towards the bound-:
ary along the lines that are roughly orthogonal to the boundary and are faintly visible'
in figure 2. These are called pleating rays and geometrically these are points where the "-
pleating locus of the convex hull in Fi* has a particular form (see [KS94]). The geo-'
metric condition implies the algebraic condition that the trace of certain words in the
gencrators of G, take on real values, but this algebraic condition alone is not sufficient’
for a point to be on a pleating ray.

1.2. Classical and Non-classical groups ;
In [GWO02] Gilman and Waterman described the parameter space of classical Schot-
tky groups affording two parabolic generators within the larger parameter space of all -
Schottky groups with two parabolic generators. Two parabolic Schottky groups be- -
long to the boundary of purely loxodromic Schottky space of rank two. The Gilman—

Waterman result uses the most general definition of Schottky group (sec section 2).
This gave a smooth boundary (except for two points) and the boundary equations are
given by portions of two intersecting parabolas. Thesc are depicted superimposed

upon the Wright plot in figure 3 and also in figure 4. '
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Figure 2: The Riley Slice

Classical Schottky

Figure 3: Classical Schottky boundary superimposed on the Riley Slice
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-A family of

non-classical

Schottky groups
T

1

Figure 4: Superimposed Boundary Parabolas. Each point A ¢ C corresponds to a two-;
generator group. The darkest region shows a one parameter family of non-classical Schottky
groups. The line-shaded subset of the classical Schottky groups comprises the non-separating
disjoint circle groups (NSDC groups). The unshaded region consists of additional non-classical ; ;
Schottky groups together with degenerate groups, isolated discrete groups and non- dlscrete.
groups. Points inside the Shimizu-Leutchbecher-Jgrgensen circle (JA| < 2) are non-discrete :
groups.

The existence of non-classical Schottky groups was proved by A. Marden in his -
1974 paper [Mar74]. However, his proof was not constructive. In 1975 Zarrow
([Zar75]) claimed to give an example of a non-classical Schottky group, but in 1988 f
Sato showed that Zarrow’s example was erroncous. Zarrow’s construction only gave
a group that was not marked classical (on the given set of generators) but might be
classical on a different set of generators [Sat88]. This showed that the verification that
an example of a non-classical Schottky group was what it claimed to be would require
two steps: show (1) that it was non-classical on the given set of generators and (2) that
it remained non-classical under any change of generators.

In 1990 Yamamoto gave an example of a non-classical Schotiky group on two
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loxodromic generators | Yam91], Unfortunately this has never been well enough un-
derstood to lead to any further examples. In [GWO02] an explicit construction is given
tor a one complex parameter family of non-classical two parabolic generated Schottky
proups. The construction is not related to Yamamoto’s in any obvious manner. Re-
cently Hidalgo and Maskit have given a theoretical construction of other non-classical
Schottky groups [HMO04].

(.3. Group Theoretic statement

‘The easiest way to state the main result of [GWO02] is group theoretically:

‘Theorem 1.1. Let A be a complex number with A = |A|e®® where 0 < 8 < 1. The group
(i), is a classical Schottky group

< [A|(1+5in8) > 2.
lere | | denotes absolute value.

A two-by-two matrix with complex entries acts as a fractional linear transforma-
tion on € and if it has determinant one, we let tr denote its trace. While there are many
variations on trace inequalities that imply discreteness, necessary and sufficient trace
inequalities for discreteness are not common. Equivalent to Theorem 1.1 is

‘Theorem 1.2. Let A and B be two-by-two complex matrices each with determinant
one with A # 1 and B # 1. The group G = (A, B) generated by A and B with tr(A) =
r(B) = 2 is a classical Schottky group

& |tr(AB) — 2| + [Im[tr(AB)]| > 4.

Here Im denotes the imaginary part of a complex number and 1 denotes the identity
matrix.

Theorem 1.3. Let A = x -+ iy. The group G, is a classical Schottky group and lies on
the boundary of classical Schottky parameter space

@ yl=1- x—z-
4

In 1996 Hidalgo [Hid96] proved that for arbitrary genus, the space of Schottky

groups with no allowed tangencies between Schottky circles is dense in the space of

noded Schottky groups, that is, where tangencies at parabolic fixed points are allowed.

Related to the density of Schottky groups with no allowed tangencies between Schot-

tky circles is the work of B. Maskit [Mas81] where it is shown that geometrically finite
Kleinian groups which are free groups belong to the closure of Schottky space.
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The proof of Theorem 1.1 in [GW02] shows that using the most general definition
of Schottky group (section 2) does not change the interiors or the boundaries of the
classical Schottky space for groups generated by a pair of parabolics.

Theorem 1.4. All variations on the definition of classical Schottky group yield spaces
with the same interior for a group generated by two parabolics. Further, the closures
are the same so that the boundaries are the same. For a group generated by two'
parabolics, the classical Schottky parameter space is closed when the most generalf;
definition of Schottky group is used.

Following the notation of Lyndon—Ullman [LUG9], we let K be the convex hull of
the set in the A-plane consisting of the circle |z| = 1 and the points z = £2. Tt is shown
in [GWO02] that if A is not in the interior of K, then G, is Schottky. More spec1ﬁca11y,
it is proved that b

Theorem 1.5. The Non-classical Schottky family. If A lies in the upper-half plane.:i

below the Schortky parabolay =1 — —2 but exterior to K, then G, is a non- classzcal;
Schottky group.

4
i
2. Definitions for Schottky groups ;
A Schottky group is defined as a group where the generators have a certain geometncf
action on the complex sphere, C, that is easily stated. However, the definition of 3
Schottky group has changed over time. Initially a Schottky group of rank n, n > 01
and n € Z, was defined to be a group generated by elements gy,....,g, for Whlch

there where 2n disjoint oriented circles Cy,CY, ....,Cp, C,, such that g;(C;) =: C} with?
gi mapping the exterior of C; to the interior of C, where thc common exteriors of the :
circles bounded a connected region in C. g

For purely loxodromic groups this definition is a natural extension of the idca of ‘
isometric circle. However, for a parabolic transformation, its isometric circle andg
that of its inverse will be tangent at the fixed point of the transformation. Thus the :
first generalizations of Schottky group allowed tangencies of paired circles at par- :Ii
abolic fixed points, sometimes called groups of Schottky type. Later marked noded }
Schottky groups were studied by Hidalgo. Most recently Hidalgo and Maskit(see
[Mas88, Hid96]) have obtained results about neo-classical Schottky groups, which :
allowed tangencies of Schottky circles, paired or not, as long as the points of tan-
gency are parabolic fixed points. Groups where tangencies of paired Schottky circles |
at non-parabolic fixed points are allowed were sometimes dubbed [MSWO02] kissing !
Schottky groups. Eventually [Rat94] topologists dropped even this restriction and we
now allow any tangencies between any Schottky circles, paired or not, at parabolic |
fixed points or not. It is this definition that allows one to more easily identify the
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houndary of Schottky space or Schottky parameter space for groups generated by two
parabolics. The interiors of these spaces and their boundaries turn out to be the same
oncee the restriction of two parabolic generators is made. Further, some of the techni-
cal problems about fundamental domains that motivated the original morc restrictive
definition can be overcome in this case ([GWO02]).

Definition 2.1. A marked classical Schottky group is a group G together with a set
ol n generators g1, ....,gn for which there are 2n circles Cy,CY, ....,Cq,C,, in € whose
interiors are all pairwise disjoint and such that g;(C;) = C;] with g; mapping the exterior
of C; to the interior of C}. A finitely generated group of Mébius transformations G is
a classical Schottky group if it is a marked classical Schottky group on some set of
generators.

If the requirement that the C;,C; be circles is dropped and the C; are only required
to be Jordan curves, with non-empty common exterior, then G is called a marked
Schottky group and a Schottky group respectively. A marked non-classical Schottky
zroup is a marked Schottky group that is not marked classical Schottky with the given
marking. A Schottky group G is a non-classical Schottky group if it is not a marked
classical Schottky on any set of generators.

Further, the region exterior to the 2n circles is called a (classical) Schottky do-

main or a (classical) Schottky configuration and the transformations g; are called the
Schottky pairings.
Remark 2.2. We observe that classical Schottky domains are not necessarily funda-
mental domains, but we can push out at tangencies that are not at parabolic fixed points
{0 get a non-classical domain that is a fundamental domain. In [GW02] it is shown that
the so called extreme domains for two parabolic generator classical Schottky groups
are fundamental domains.

Remark 2.3. All Schottky groups are geometrically finite, free, discrete groups by the
Klein-Maskit combination theorems or the Poincaré Polyhedron theorem [Mas88].

3. The Geometry and Topology: pinching and nodes

We remind the reader that the hyperbolic threc-space is given by,
H3 = { (X,y,t) | X, )l c R withr > 0}

together with the metric

Vdx? +dy? + dr?
ds = .

t

The boundary of H3, € = {(x,y,0) € R3} U {e0} is the complex sphere and is also
called the sphere at infinity.




We recall that a discrete group of Mobius transformations ¢ acts on C and divides
the complex plane into two disjoint regions, the region consisting of points where G
acts discontinuously, called the region of discontinuity of G and denoted ©2(G) and it
corplement A(G), the limit set of G. A group G acts discontinuously at a point z € ¢
if z has a neighborhood U such that g(U)NU =0 for all but finitely many g € G and
freely discontinuously at the point if g(U)NU # @ = g == the identity. The group Q
is Kleinian if it acts freely discontinuously at some point z. If the group is Klemmi
and the stabilizer of a point z € Q(G) is finite, then U can be replaced by a preciselj;f}
invariant neighberhood of z (i.e. a neighborhood U where g(U)NU # 0=+ g(U)=U )$

Since the discrete group of Mobius transformations G acts discontinously on IHI’n
one can form the quotient, M(G) = (H3 UQ(G))/G. The groups we consider aré]
finitely generated so that by the Ahlfors finiteness theorem [Ahl64] S = Q(G)/ G"*
called the ideal boundary of M(G), is a Riemann surface of finite type or a finite umom
of such surfaces where every boundary component has a neighborhood conformallw
equivalent to a punctured disc. It may be that Q(G) is empty. If G is torsion free,

M(G) = H3/G is a hyperbolic three manifold. If G has finite torsion, M(G) is M
hyperbolic three-orbifold.

In this paper the groups we consider will be finitely generated and either torsionf- '
free or have torsion elements of order two. In the later case appropriate modifications:
of the following can be made as needed.

If G has a parabolic element with fixed point p € € and G is torsion free Klelman, 4
then Gp, the stabilizer of p, is an abelian group of rank 1 or 2.

Gnotin G,,, and D, NA(G) = {p}. The point p belongs to the boundary of D,. Such a 5
point p is said to support a horocycle and D,, is called a horocyclic neighborhood of p: '.
For every puncture on the quotient there is a lift of the point that supports a horocycle. §
If p supports two horocyclic neighborhoods that are disjoint except for p, then p is

said to support a double horocycle or be a double cusp and the quotient manifold is':
said to be doubly cusped at py.

A Kleinian group is termed geometrically finite if there is a finite sided fundamen- .".‘
tal polyhedron for its action on hyperbolic three space, H>. By the Poincaré polyhe- 2
dron theorem, a geometrically finite group is finitely generated.

In terms of the limit set, G is geometrically finite if and only if every point in the :
limit set is of one of three types: (i) a rank two parabolic fixed point, (ii) a doubly }
cusped parabolic fixed points or (iii) a point of approximation. It is shown in [Mas88, &
p. 123] that a parabolic fixed point is not a point of approximation and it is proved
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Iigure 5: The surface is the quotient of a rank two Schottky group. A noded surface is obtained
1l the generators are parabolic. In that case the curves P| and P, are pinched to form a noded
surface with two double cusps.

in [JIMM79] that a finitely generated free Kleinian group is geometrically finite if and
only if each of its parabolic fixed points supports a double horocycle. Thus when we
consider free, geometrically finite Kleinian groups, we have that all parabolic fixed
points are rank one, doubly cusped.

A noded surface is one where every point has a neighborhood which is either iso-
morphic to adisc in C or to the set iz| < 1.jw < 1,zw =0 where (z.w) are coordinates
in C? [Ber74]. The later points are called nodes. Geometrically, a parabolic fixed point
corresponds to a node if the parabolic is not accidental [Mar77].

If G is a rank two Schottky group with no parabolics, topologically W(;) is a solid
handlebody of genus two and S is a genus two Riemann surface (see figure 5). If G is
wenerated by two parabolics, it will have at least two double cusps and topologically
(if it has only those two cusps) § will be a sphere with four punctures. The four
punctures are identified in pairs. The two double nodes are obtained from the surface
in the figure by pinching the curves P; and P, to points. This is the case we study.

For any given group the surface may or may not be further pinched along some
curve(s), but not all curves are pinchable (see [HMO04]). While every noded surface
cun be obtained by taking algebraic limits of groups corresponding topologically to
pinching | Yam79], the results of [GW02] show that

Theorem 3.1. The boundary of classical two-parabolic Schottky (parameter) space
(see section 4) does not generically come from additional pinching. In particular,
there are only four points on the boundary, the points A = +i and A = +2, where the
group Gy, corresponds to additional pinching to a parabolic.

Related to this theorem is the observation of [HMO04] that there are only finitely
many different topological types of neo-classical Schottky groups of a fixed genus.
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4. Schottky Space and the Schottky Parameter Space

We recall the definition of Schotiky space from [Mar74, Mar77] and (JMM79] and
refer the reader to Marden’s papers for an excellent fuller background. We alert the
reader to the fact that the use of the term Schottky space has also varied over time,
Original papers use the term Schottky space for the representation space, which ig
how we define it below. Some, but not all, recent papers use the term Schottky spacé:
to refer to the quotient of the space under the conjugation action of PSL(2,C). We'

term the latter the call the Schottky parameter space to avoid confusion. We defing’
‘A
these space with some care.

&
4.1. The Representation Variety %
Following Marden [Mar77] and the Jgrgensen-Marden-Maskit paper [JMM79] w "
discuss the representation space of a finitely generated group and complex projec-ﬁ
tive coordinates for these spaces. To shorten the exposition, we assume the group in'

question is of rank two, but the statements hold for any group (see [GW02}). 3
g
."Ei
o The space V of representations for a two generator group. Let G be the group gener-3

&
ated by A1,A; a pair of 2 X 2 of non-singular matrices. If A; is the matrix 3i Zi
i i
then it determines a point in complex projective space of dimension 3 under the map!
A;— ((ai,by,¢1,d;)] where [] denotes the projective equivalence class of the four~tuple.;,§
If CP; denotes complex projective space of dimension 3, the ordered pair (A;,A) de- &
termines a point in CP3? as does any ordered pair of matrices in PSL(2,C). The ;
image of (PSL(2,C))? is the open set V = CPP3* — P where P is the subvariety given!
by H,?:l (aid; — bic;) = 0.

\—/.
o e A

o The space V(G) for a finitely presented group, G. More generally, let G be a finitely
presented group G = (A),A2|Rm(A1,42) = 1,u?(P;) = 4) where P; = P;(A1,4,),j =3

in CP5? satisfying the polynomial equations induced by the relations R; and Pj. Then "'1
V(G)* is an algebraic sub-variety, and V(G) is Zariski open with V(G) = V(G)* —P. i@
V(G) can be represented as an affine algebraic variety, in fact a domain in complex :
number space of appropriate dimensions.

generated by the B;. A homomorphism ® : A; +— B, that sends each parabolic element
either to a parabolic or the identity is called an allowable homomorphism. From now §



Houndaries for two-parabolic Schottky groups 293

on we assume all homomorphisms O are allowable and note that V (G) can be written
s V(G) = {(H,0) 0 is a homomorphism of G onto H}.

The natural topology of V(G) is the topology of point-wise convergence, also
villed the topology of algebraic convergence. V(G) with this topology is called the
representation space of G.

o The space Vo(G) of PSL(2,C) conjugacy classes of representations. An element
I € PSL(2,C) induces an action on V(G) given by conjugation, (that is, (H,®)
(hHh™ 1 ho@®@oh™1) ). We let Vp(G) be the quotient of V (G) under this action and call
it the representation parameter space.

4.2. Spaces of two-generator groups

We can define additional spaces related to V(G) by putting conditions on the group G
or the group H or the map © and we use the notation V(G)yx to denote that H satisfies
condition X. We want to attach names to the spaces defined using this notation. (See
section 5 for the definition of nsdc group.)

Consider a fixed group G = {A(,A) so that G has no R; or P; relations, that is, a
free group of rank two. We define

NSDC-space: V(G)nssc = {(H,0) € V(G)| H is of nsde-type}
and its quotient NSDC-parameter space: Vo(G)psac = V(G)nsac/PSL(2,C).
Schottky space: V(@)Sch,,,,ky ={(H,0) € V(G) | H is a Schottky Group}
and its quotient Schottky parameter space: Vy (5)scho,,ky = V(@)sChonky /PSL(2,C)
Classical Schottky Space: V(G)cassicat = { (H,®) € V(G) | H is a Classical Schottky Group.}
and its quotient Classical Schottky parameter space, Vp( G)C,m,-m, == V(é)clamcal /PSL(2,(

Next, consider a non-elementary free Kleinian group G” generated by two par-
abolic transformations A; and A, without any additional parabolic transformations
(i.e. any parabolic transformation is conjugate to a power of Aj or Az). G* = (A}, A |2 A| =
tr2 A, = 4). Such a group is often called a Riley group [MSWO02]. We call V(G”) the
two-parabolic representation space. It is a slice of the representation space. We have

Two-parabolic Schottky space:
V(GP)schottky = {(H,®) € V(G”) |H is a Schottky group}

Two-parabolic classical Schottky space:



V(G tussical = {(H,0) € V(G |H is a classical Schotiky group}.
Marked two parabolic classical Schottky space:

V(G marked classicat = {(H,©) € V(G®) | H is marked classical on (©(A} ), ®(A;))
Non-classical two-parabolic Schottky space:

V(G?)on -classicat = {(H,®) € V(G”) |H is a non-classical Schottky group}

It is clear that the two parabolic representation space, V(G?) is a slice of the rank
two representation space V (G) and that two-parabolic Schottky space V(Gp) Schottky 18

-~

a slice of Schottky space V(G)schorrky. Since trace is a conjugacy invariant, we have

Vo(G?)schorsky C Vo ((A})Scho,,ky. It is easy to see that any non-elementary Mobius group
generated by two parabolics is conjugate to a group of the form G, for some A where'

tr[A;,Az] —2 = 4)A2%. One can take A to be the complex parameter for the Schottky

parameter space VQ(GP)Sc-hottky-

5. Non-separating disjoint circle groups

The precise definition of non-separating disjoint circle groups appears below in section
5.2. We end this paper with a summary of some related results for non-separating

disjoint circle groups for two reasons: (1) the theory here motivated the theory for .
two-parabolic Schottky groups by indicating how allowing tangencies between any .
Schottky circles, at non-parabolic points or at parabolic fixed points, made it possible '
to identify the boundary of the space and (2} it is casy to outline the method here so
as to illustrate when non-parabolic tangencies can be pulled apart. Troels Jgrgensen

pointed out the fact that allowing such arbitrary tangencies would yield the tear drop
boundary of figure 7.

5.1. M3 geometry

P

A hyperbolic line is determined by two points and has two ends on the sphere at

infinity. We follow the notation of [Fen89] and denote a hyperbolic line by [v,V/] *

where v and v/ may lie on C or in H3. An elliptic or loxodromic transformation fixes
a unique hyperbolic line, known as its axis. A parabolic transformation fixes a unique

point point on C. We may see that parabolic fixed point as degeneration of the axis of

either a loxodromic or elliptic transformation.

Given any hyperbolic line, L, there is a unique hyperbolic isometry that fixes the

line and rotates points in H> by an angle of 7t about the line and which also acts on the
boundary. We call this transformation the half-turn about L and denote it by H; ..
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£.2. Definitions and basle facts

Non-separating disjoint circle groups, known as nsdc groups for short, were first de-
tined in [Gil97]. Like Schottky groups, nsdc groups are geometrically defined groups.
'To define them, we begin with the definition of the ortho-end of a group.

For a two generator group G = (A, B), we define N, the perpendicular to A and B
to be the hyperbolic line in H3 that is the common perpendicular to the axis of A and
It if A and B are either loxodromic or elliptic. If either A or B or both-are parabelic,
we define N to be thpperpendxcular from the parabolic fix point to the other axis or to
the other parabolic fixed point. We assumé that G is non- -elementary so that the axes
ol A and B always have a common perpendicular.

We associate to (A, B) its ortho-end, the six-tuple of complex numbers (a,da’,n,n’,b,b’)
where A factors as Hig gjH, ) and B factors as Hy, »\Hjp; Where N has ends n
and #', the axis of A has ends @ and &’ and the axis of B has ends b and b’ (see
[Fen89] for more details about this notation). Convefsely, an ordered six-tuple of
numbers (a,a’,n,n’,b,b") € C® determines an ordered pair of matrices (A,B) where
A= H[a,a/]H[,,‘,,l] and B = _H[,,’,,/]H[b,bl].

Definition 5.1. We say that a point in C° has the non-separating disjoint circle prop-
erty if there exist circles C4, Cp and Cp € C with disjoint interiors, where Cy4 passes
through a and @', Cg passes through b and b’ and Cp, passes through # and n’ and where
no one of the three circles separates the other two. We allow the possibility that some
of the three circles are tangent to others.

We say that G is a marked nsdc group if its ortho-end has the nsdc property and G
is an nsdc group if some ortho-end has the nsdc property. '

For an non-elementary group G the ortho-end of the group can be defined whether
or not the group is discrete. It is shown in [Gil97] that an nsdc group is always discrete.
Further it is shown that an nsdc group is free and is always a classical Schottky group.
1t is clear that one can easily pass-back and forth between the matrix entrics for A and
B to the ortho-ends.

Geometrically when G is nsdc, the three generator group 3G = (Hjg ¢/}, Hjn ) ,H[b’b:])
has as its quotient an orbifold whose singular set is the image of three hyperbolic lines.
There is a natural projection from H>/G — H?>/(3G) that comes from factoring out
by the action of a hyperbolic isometry of order two.

Remark 5.2. If we begin with a group G = (A, B) for which the three circles C4,Cp
and Cp are pairwise disjoint and no one separates the other two, then the group 3G
is a geometrically finite function group uniformizing a sphere with exactly six points
of order two. Such a group is called a Whittaker group of genus two. These have



been studied by [Kee80] and more recently by [GGD04|. Each Whittaker group of
genus two contains a Schottky group of genus two as an index two subgroup. The
hyperellptic involution of the uniformized genus two surface is induced by any of the
elements of order two in the Whittaker group. Conversely each genus two surface
can be obtained in this way. As any simple closed geodesic on a genus two surface
is invariant under the hyperelliptic involution, we have this phenomena is still valid
after degeneration o the two parabolic Schottky group: the Whittaker groups then
degenerate to 3G groups with tangencies.

5.3. Methods

The nsdc boundary tear drop (figure 7) is found by analyzing configurations of cir-*
cles, attaching appropriate parameters to the configurations, and then relating their |
geometry to the entries in the matrices of the generators for the group. This method is
also used to find the boundary for Riley groups that are Schottky groups, but the latter -
proof involves many more technicalities. The main tools for finding the boundary in
the nsdc case arc analytic geometry and the inverse function theorem. We give some .
of the details of this case to illustrate the method and the idea of pulling tangencies ;

apart.

An nsdc group generated by two parabolics involves one free parameter d =x+iy.
The six-tuple of points are (—2,0,2,4,0,2). The circles C4 and Cg are tangent at the 'I.
point 0 and, therefore, determine an angle t. This is the angle that the linc connecting

their centers makes with the positive x-axis moving in a counter-ciockwise direction :
(see figure 6). Conversely, any angle T between /4 and —n/4 determines such a :

pair of tangent circles. Any circle Cp passing through 2 and d will have a center

with coordinates (M,N) and radius r. If Cp is tangent to C, at a point T, then the -
coordinates of the point (M,N) can be computed as explicit functions of T as can -

the radius r. Points on the circle Cp, known as the 1-circle are given by (x,y) =

(M(T) + ry - cost,N(T) + ry - sint), for some real parameter ¢, 0 <t < 2m.

If Cp is not required to be tangent to Cy but only to pass through d and be tangent to ;

Cg so that we have an nsdc triple, then it is clear that for &’ = (¥, ') in a small circular }

neighborhood of d = (x,y) there are circles through (x',y) sothat (—2,0,2,d’,0,2) are
still nsdc. This shows that non-tangent Cp’s correspond to interior points of NSDC-
space.

If Cp is required to be tangent to C4, we have that for some d’ near the point on
d = (x,y) on the t-~circle, Cp, this may or may not be the case.

We consider all points on the 1-circle. One has x = x(t,t) = M(t) + r;-cost and
y =y(1,t) = N(T) + ¢ - sinz.

Thus one has a map from R? to itself: (t,z) — (x,y). One can calculate the Ja-



(M(t),N(t))

Figure 6: 7 - circle configuration with Cp and C, tangent

cobian of this map to show that (xp,y) is a boundary point of nsdc space precisely
whenxg =2 — Ti‘—:‘zﬁ and yg = 85—‘1“;%3—1 The plot of this boundary is the tear drop
shown in figure 7. Points d = x + iy in the interior of the tear drop corresponds to
(marked) groups G4 that are not nsdc and points in the exterior to G4 that are nsdc
groups. A change of parameters maps the tear drop into a parabola and replaces the
parameter d by A = d 5. Taking marked and non-marked nsdc groups into account
yields the region bounded by the two parabolas pictured in figure 4 as nsdc-space, that

is {A | Gy, or G_3 is an nsdc group}.
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Searching for the cusp

David J. Wright

Abstract

We discuss the process of algebraically finding cusps on the boundaries of de-
formation spaces of kleinian groups. The geometric starting point is an arrange-
ment of circles with prescribed tangencies and relationships under a set of Mbius
transformations. These lead to polynomial ecquations in several complex vari-
ables, which may then be numerically solved for the values which describe the
cusp. We will go through this process for several deformation spaces correspond-
ing to “plumbing” constructions of Maskit and Kra, and we will present some
of the numerical output. The same techniques can also be used to calculate the
coherent spiral hexagonal circle packings discovered by Peter Doyle, and we will
compare the similarity factors of those packings to cusps on boundarics of defor-
mation spaces.

1. Introduction

In this paper, we study the theoretical and numerical calculation of maximal cusp
groups on the boundary of deformation spaces of kleinian groups. Specifically, we
are interested in maximally parabolic groups which allow no deformations with a
greater number of classes of parabolic elements.

The foundational study of cusp groups occurred in Bers’ paper [Ber70] on bound-
aries of Teichmiiller spaces. There he proved that the cusp groups form a set of
measure zero in the boundary, and that there exist boundary groups he termed fo-
tally degenerate, for which the ordinary set is a single invariant domain. Then came
a windstorm of ideas from Thurston, first in his celebrated Geometry and Topology
of 3-Manifolds and then in many subsequent talks and notes [Thu80, Thu82, Thu89,
KT90). Thurston introduced the idea of traintracks to describe classes of simple closed
curves on surfaces and used that idea to combinatorially describe the boundary of Te-
ichmiiller space. He also introduced the basic notions of circle packings and demon-
strated their relevance to hyperbolic geometry. The limit sets of maximal cusp groups
are all infinite circle packings of the Riemann sphere. These are just a few castoffs of
‘Thurston’s vast program in geometry and topology.

There have been very many results on the boundary since then, including Mc-
Mullen’s theorem [McM91] that the maximal cusp groups are dense in the boundary
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of Bers’ embedding of the Teichmiiller space of a Ricmann surfuce of finite typ‘,‘
As a result one can try to explore the boundary of Teichmiiller space by calculating
very many maximal cusps. Similarly, Canary, Culler, Hersonsky and Shalen prove [f}
[CCHSO03] that the maximal cusp groups arc dense in the boundary of Schottky spac..@

In the manuscript [Wri87], the author explained numerical calculations of th§
cusps on the boundary of Maskit’s version of the Teichmiiller space of once-punctureqi
tori, as well as some theoretical aspects of this calculation. The basics of that calcqi
lation now appear in the book Indra’s Pearls [IMSWO02], and related material may bl
found in papers of Keen and Series, for example [KS92, KS93, KS94, KMS93]. :

In this paper, we have reworked the search for cusp groups in very elementar'y"_;
terms involving the existence of an arrangement of tangent circles (which we call the’
circle web of the group) and a set of Mobius transformations that maps some of the -
circles to others in a prescribed way. We will explain how maximal cusps on thq
boundary of the Schottky space of genus g may be described in this manner, and wi "
will present several numerical examples of the geometry of these cusp groups. Whlle
leading up to higher genus theory and examples in Section 6, we review the theoryl
of these circle webs for maximal cusps occurring on the boundary of Maskit’s Telch-
miiller space of once-punctured tori in Section 2, on the space of pairs of punctured
tori in Section 4, and Riley’s slice of two-parabolic-generator groups in Section 5. Wﬂ
also present precise images of these maximal cusp groups for the first time. r‘;j

In the course of reviewing the cusps on Maskit’s 77 1, we observed a striking par-i,
allel between the geometry of these cusp groups and that of the Doyle spiral circle§
hexagonal packings. In Section 3, we study spiral circle packings following some of ‘
the same techniques used for maximal cusp groups. We show that all the simi]aﬁtyf:'
factors of Doyle packings and their square grid analogues are algebraic numbers, and*
we present detailed calculations revealing a conjectural asymptotic pattern for these :
similarity factors, which is analogous to the cardioid shape of cusps on Maskit’s 17 1,
proved in [Miy03]. :

Finally, we would like to extend deep thanks to the Isaac Newton Institute and the .
organizers Caroline Series, Makoto Sakuma and Yair Minsky for their support during .
the program on Spaces of Kleinian Groups, during which the bulk of this manuscript
was prepared.

2. The first example: cusps on the boundary of Maskit’s 7i ;

In [Mas74}, Maskit gave a geometric method based on his combination theorems lead-
ing to a complex embedding of the Teichmiiller space of a Riemann surface of finite
type. The specialization of this method to the case of a once-punctured torus yields a
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family of groups Gy, generuted by two Mobius transformations of the form

1
@&):y*;, b(z) =z+2.
We will sometimes denote a, by simply a. In addition, when we need to, we shall take
_ (e matrix realizations of these transformations to be
1 2
b= .
)

—iy —i
%:<4 0)’

Maskit proved that the set of values of y with 3y > 0 for which the group G, satis-
lics certain geometric conditions forms a model of the Teichmiiller space of marked
punctured tori. As a consequence, this set is a simply-connected domain in the upper
half-plane, which we will simply refer to as 17 ;.

Our numerical calculation of this boundary was based on searching for cusps. For
4t in 71 1, all the elements of the group G,, are hyperbolic (by which we mean not ellip-
tic or parabolic; hence, this includes “loxodromic™), except for conjugates-of powers
of the words b and abAB. (We shall use the upper case convention to denote inverses
of elements in our group. Thus, A and B are the inverses of a and b, respectively.)
(‘usps correspond to values of u on the boundary where an additional word becomes
“accidentally” parabolic.

Only one additional class of words in G, may become parabolic, and that class
corresponds (o a simple closed curve on the once-punctured torus. These words may
he parametrized by rational numbers p/q. Additional details about this theory may be
found in Indra’s Pearls and the papers we have referenced above. There are several
possibilities for this parametrization; for this paper, we will use the following.

Definition 2.1. For each fraction p/q in Q= Qu{1/0}, we define a word w,/, in
the {ree group generated by @ and b (with inverses A and B) by the following recursive
rules:

(l) W0/1 =A and Wl/o =b.

(i) For any pair of fractions p/q < h/k with hg — kp = 1, we have
Wqug =Wp/gWhk-

The justification of this definition lies in the elementary theory of continued frac-
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tions, and we shall leave this to other sources. As a few examples, let us just mentio

Ws5/8 =AAbAAbAbAAbAb7 W1/1s =A'5b,
W—l/l =AB (duetow—l/lwl/OZWO/l), w—7/9:(AB)4A(AB)3A

In the group G, the matrix entries of each word are polynomials in the compleX’
variable u. Thus, the condition that the word w,/, be parabolic is equivalent to &
polynomial equation trw,/, = £2. The story of these trace polynomials is told partly:
in Indra’s Pearls and in more detail in [KS92]. As a consequence of the analytiQ:
theory of Teichmiiller space as constructed by Bers, there is precisely one solution of
this trace equation lying on the boundary of 71| and we shall denote this distinguished:
solution by u(p/q). With the assumption that Sy > 0, it turns out that in this case tha;
solution satisfies the trace equation equal to 2. This is proved in [KS93] by an analysifsl'?
of the ‘p/q pleating rays’ in Tj ; which are shown to be curves terminating at the p/¢.-
cusp and along which the trace of the p/q word increases from 2 to o. The mirrogs
image Ty, of Tj,; under complex conjugation has cusps on its boundary which a:e.
solutions of the other equation trw,/, = —2; this happens precisely when q is odd.;
Minsky’s work [Min99] on the space of pairs of punctured tori has established the fact’
that the mapping p/q + p(p/q) continuously extends to an injective continuous map
of R onto the boundary of T1 1 ”

As explained in Chapter 9 of Indra’s Pearls, the mapping p/q — u(p/q) was used
to numerically compute this boundary. It is easy to calculate by hand that ¢{0/1) 21,_,.
as well as various other values, for instance, u(1/1) =2+2iand p(1/2) =1+ V3i..
To calculate other values of u(p/q), we enumerate the Farey scries of fractions of
denominator at most D, for some large integer D > ¢, and we solve the trace equationz
trw,/, = 2 for u(p/q) by Newton’s method using as the seed value u(h/k) wheref:‘;
h/k is the fraction preceding p/q in the Farey serics. This is what we refer to as a;
boundary tracing algorithm. It turns out to be crucial to compute the trace polynomials'_:_?:
in the most efficient recursive manner, and then to use a numerical approximation
to the derivative that appears in the formula for Newton’s method. Nonetheless, the
convergence of this algorithm is quite fast. There are now other calculations of this and r
slices of other Teichmiiller spaces by Komori-Sugawa-Wada- Yamashita (see [KS04,
KSWYY]); their program is based on a criterion for discreteness, rather than a search ,
for cusps. :

Now we turn to the most important part of this section, the geometry of the lumt
sets of the cusps. As an example, we take the 1/15 cusp approximately given by

u(1/15) = 0.011278560612 4 1.958591030112 ¢

i i G i

corresponding to the word Ab, As a maximal cusp, every simple closed curve on ;
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the corresponding Riemann surface may be shrunk to a puncture, and a consequence
ol this is that every component of the ordinary set is a circular disk stabilized by a
l'uchsian subgroup of G,,. There are several distinguished subgroups in G,,. First, in
ull these groups we have that trabAB = —2, regardless of the value of u. Therefore,
the subgroup H generated by b and aBA has the property that trb = traBA = 2 and
i h(aBA) = trabAB = —2. The conditions tru = trv = 2, truv = —2 always imply
(hat the group generated by u and v is conjugate to the triply-punctured sphere group

o 3) (%)

In fact, in this case b and aBA are easily seen to be exactly those matrices. The limit
set of Hy is just the extended real line R bounding the lower half-plane Dy, which is
i component of the ordinary set. For any element g € G, we also have all the circles
£(R) belonging to the limit set of G, bounding disks stabilized by gH g L

penerated by

In a cusp group, another family of circular disks appears. We consider the sub-
proup Hy generated by A13b and A(Ba'3)a. This also is seen to be a triply-punctured
sphere group from the trace equations

trAb = trA(Ba)a =2,
trA(Ba"®)aA"’b = trABab = —2.

The limit set of A, is another circle bounding a disk D, in the ordinary set. The ordi-
nary set of G, consists of the two families of disks g(D;) and g(D,) for all elements
g of Gy.

We emphasize a particular selection of these disks in Figure 1. We have relabelled
1)) as €p and Dy as &¢. In addition, we have plotted certain images of &g (all dark gray)
and of & (all light gray) under clements of the group G,,.

The numbering of the circles follows these rules:

a(g;)=gj+1 for0<j<0; b(e;) =¢€j0 for0<j<1;
a(8;) =841 for0< <15, b(8;) = 815 for0< <.

We have stated these in a manner to show how they generalize to other cusp groups.
This web of circles with mapping relations is enough to imply that the words b, ABab
and A'5b are all parabolic. The reason is contained in a simple and obvious lemma.

LLemma 2.2. A non-identity Mobius transformation that fixes each of a pair of tangent
circles in the Riemann sphere is parabolic with unique fixed point equal to the tangent
point.
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Figure 1: A chart of tangent circles in the ordinary set of the 1/15 cusp group.

To start, the map b fixes both & and €, which are tangent at oo; this confirms b i
parabolic. Secondly, we can follow the mapping relations to establish

ABab(gg) = ABa(gy) = AB(g) = A(g1) = &y, ;
ABab(d) = ABa(dis) = AB(816) = A(81) = . 4
This establishes that ABab is parabolic with fixed point at the intersection point eorj
9. Finally, a similar argument proves that A!b fixes both 8y and §;, and hence ité
fixed point is 3y N &;. We have marked the fixed points of various words using th%
convention that w means the attractive fixed point of the M&bius map w. i

¥
The external tangency of the disks in the diagram is crucial to identifying this
group as the 1/15 cusp. The disk D; can be defined as that bounded by the unlqu
circle passing through the points ABab, bABa and b ( = o). Similarly, the disk D> ca card
be defined as that bounded by the circle tangent to Dy at ABab and passing throughi
A'Sb. The other disks are defined by the mapping rules given above. Provided b,.j.
ABab and A'>b are all parabolic, these disks will all be uniquely and well defined by:
these stipulations. Thus, there is such a circle web for any solution u of the 1/ 154
trace equation trA'°b := +2. The particular solution u(1/15) is the only solution with:
Su > 0 for which these disks are distinct and can be chosen to have disjoint interiors.;

(There is also one solution with Su < 0 which yields a mirror image circle web in the
lower half-planc.)
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Vigure 2: Drawing the orthogonal arcs in the circle web, we arrive at four Schottky blobs. The
lelt frame is the 1/15 cusp group; the right is the 5/26 cusp group.

To use the external tangency to establish that this cusp group is discrete and free,
draw the orthogonal arcs in each disk between tangent points. The resulting arcs piece
(ngether to form four curves bounding “blobs” which are shown in Figure 2. The
original web of circles is also shown in outline. Due to the mapping relations given
above, the chain of 17 circles surrounding (he hatched blob marked A is mapped by the
iransformation a onto the chain of 17 circles surrounding the hatched blob labelled a.
Since the arcs were chosen to be orthogonal to these circles, it follows that @ maps the
houndary of the A blob precisely onto the boundary of the a blob in such a way that
the interior of the A blob is mapped onto the exterior of the a blob. The analogous ar-
pument shows that the transformation b maps the interior of the B blob (right hatched)
onto the exterior of the b blob (also right hatched). We should point out that although
the picture may not reveal this, the boundaries of both the B and b blobs consists of
four separate circular arcs, two of which are half-lines passing through oo

The four blobs therefore satisfy exactly the mapping relations that define a Schot-
iky group of genus two, except for the condition that their closures be disjoint. Much
of Klein’s combination theorem still applies, with the conclusions that the group gen-
crated by a and b is free and discontinuous, and that the common exterior of the four
hlobs, which consists of two dark gray circular (or “ideal”) triangles (with one vertex
at 00) and two light gray circular triangles, is at least a subset of some fundamental re-
pion for the group. In fact, the four triangles do indeed form a fundamental region for
the group, and the associated Riemann surface is a pair of triply-punctured spheres.

This cxample establishes the theme of this paper: defining cusp groups in terms of
patterns of tangent circles with given mapping relations under given Mobius transfor-
mations. For the Maskit groups, the general mapping relations are a theorem of Keen
and Series [KS92].

Theorem 2.3. Given a fraction0/1 < p/q < 1/0, for the p/q cusp group G, = (a,b)
on the boundary of Maskit’s Ty | there are disjoint open disks €;, 0 < j <1, and d;,
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0 < j< p+gq, such that

a(ej) =gj1 for0< j<0; b(ej) =¢jr0 for0<j<1;
a(®;) =8;4p for0<j<gq; b(8;)=08j14 for0<Lj<p.

Moreover, the following pairs of disks are externally tangent: (€o,€1), (8;,8;11) foi;
0<j<p+q—1, (€0,90), (€0,84). (€1,8p). (E1,8p+q)- '

Conversely, given transformations a, and b and disks € ; and 8; satisfying all thesf
conditions, {a,b) is the p/q cusp group on Maskit’s boundary. ;

There is a similar statcment for negative fractions --p/q, which can be deducetf:t
from the fact that w_,,(a,b) is conjugate to w;, ,(A,b). The more convoluted circl‘ﬁf
web for the 5/26 cusp group is shown on the right in Figure 2. In this case, the chais;
of circles seems to consist of five chains of five circles each, which seems to correlat'ci

to the continued fraction cxpansion L1 of 5/26. Similar patterns may be percelvef
5+

in the circle chains for more complicated fractions. We do not yet know a precxsé
statement of how the circle web reveals the continued fraction expansmn For a verk;
rough statement, we might hazard the following. For a fraction p/q = _— with botl!
p/q and r/s between 0 and 1, the circle chain of p/q appears to con51st of a gentle
spiral of a; mildly distorted copies of the r/s circle chain. Further analysis of thm;i
phenomenon may be found in work of Scorza {Sco].

3. Cusp groups and spiral circle packings

i N e A e 5,

If we apply all powers of the transformation a to the original circles in the circle we@
shown in Figure 1, we obtain the two double spirals of disks depicted in Figure 3. Bol b
spirals emanate from the repelling fixed point of ¢ and flow into the attractive fix
point. There is a symmetry to this pattern in that each disk is tangent to exactly tw
disks of each shade. Locally, this packing of circles has the combinatorics of a square;
grid. Such a packing was called a square grid circle packing by Schramm in [Sch97],&
provided the circle which passes through the tangent points of a ring of four c1rcle$
corresponding to one square in the grid is also orthogonal to those four circles. ThJ'
is ever so slightly not truc for the 1/n Maskit cusp groups. Nonetheless, the pattern
is rigidly determined by a small subset of the mapping relations given in the previous;

section. In this section, we wish to compare these spiral circle packings against the!
bona fide square grid packings and the more common spiral hexagonal circle packmgs“
discovered by Peter Doyle and treated in [BDS94].

In general, the pattern for the 1/n cusp group is detcrmined by the arrangement]
of the six disjoint disks €g. €1, 89, 81, Mo and 1)1, as shown in Figure 4. Here is the
desired abbreviation of the mapping relations in Theorem 2.3.
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Figure 3: Spirals of circles in the 1/15 cusp group.

Proposition 3.1. For any complex number u with imaginary part T = Su > 0, let
alzy=u+ %, b(z) =z+2 € =R, € == R+ it. There is a unique value of u such that
we have circular disks 8o, 81, o, N1 satisfying the following properties:

MO: The six disks €, 8, \; have disjoint interiors, and the following circle pairs are

externally tangent:

(e0,€1), (30,81), (Mo,M1), (B0,80), (Mo,&), (1,€1), (Mi,&).

MI1: a(8p) = 31, a(gp) = €1 and a(Mo) =M1,
M2: b(e;) =¢;and b(8;) =nj for j=0,1;
M3: a"(60) =TNo,

MA4: the disks a’(8) all have disjoint interiors.
The group (a,b) is the 1 /n Maskit cusp group.

Proof. Once again these conditions are sufficient to imply that b, abAB and A"b fix
pairs of tangent circles and hence are all parabolic. The last condition completes
proof on the basis of Theorem 2.3, since all the circles defined by &; = a/(8g) for
() < j <n+1 have disjoint interiors. Od

One feature of these conditions is that, if we start at any circle in the pattern and
[ollow the spiral arm that it lies on from one circle to the next, then after n steps (15 in
the example shown in Figure 3) we arrive at a circle that is separated from the original
circle by a single tangent circle on the other spiral. This feature can also be found in
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(1) Maskit Diagram (ii) Hex Packing Diagram

Figure 4: The cluster of six tangent circles for (i

) the Maskit cusp groups and (ii) the hcxagoqﬂ‘
circle packing.

square grid and hexagonal (or Doyle) circle packin

gs. In both of these cases, we wi,ﬁ
also assume that conditions M0 and M1 hold. We

will replace M2 by one of

g

Mo, €1) are both externally tangent. "

H2: The pairs of circles (8.¢, ) and (

8G2: The circles passing through the tangent points of the two chains of four circleg’
(€0,80,81,€;) and (€0.M0.M1,€)) are orthogonal to their respective chains of,
circles.

conditions on the geometry of the six circles, and yet both conditionﬁ%
Iead to the existence of a second Mabius transtormation b(

2). Before we come 10 that,
Y
fact, we first examine the dependence of the circles 8/, M; on the original choice of‘
%
circles €.

In the case of Doyle packings, this analysis overlaps with that found 1»
[BDS94], although in this paper we start with the Mobius s
flower rather than derive it.

These are

ymmetry a of the D()yléf-}f

Proposition 3.2. Suppose €y and €| are circular disks which are externully tangent af:
the point 2o, and a(z) is a Mibius transformation that ma

ps €&y onto €1 and does not S
hatd
20- Then, for either choice of H2 or SG2 as an additional condition, there is at mos{%}:

one collection of circles &, §,, Mo and My satisfying MO, M1, and the chosen thir&
condition, as well as the topological condition that a ! (z0)

a2
of the complement of the six disks that touches all six disks.

. ok
lies on the one componenp;.{é
4

The existence of such collections of circles depends on certain algebraic ine

quali
ties on .

Proof. We can conjugate by a Mobius map so that the langent point becomes infinit

the inverse image of the langent point under a becomes 0, and the bounding circles ar
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now the horizontal straight lines R and R -+ it for some T > 0. That is, € and €| are
now the shaded half-planes shown in either frame of Figure 4. After conjugation, we

would have a(0) = e, which implies that the matrix of « is of the form gl g
moa(z) = —of — B; The interiors are mapped in the correct manner only if —B? is
pasitive. Then we can uniquely conjugate by a positive diagonal matrix ¥ o

v

w0 that @ becomes the transformation a(z) = u -+ 1 for some complex number u with
311> 0. (Choose y so that —y*B? = 1.) This shows that our starting pair €o, € in
Igure 4 is perfectly general up to Mobius transformation.

The topological condition on a” '(s0) = 0 is designed to ensure that the disks &
and My lie “between” 8y and Mg in the hexagonal packing case shown in Figure 4 (ii).
In addition, the tangent points of 8y and 19 to € must have opposite signs.

Let u= o6+ it with T > 0. Let 89 be the circle tangent to €y —= R at x with radius
1 -~ /2. Thus, the center of 8 is x + ir. The circle 8; = a(dy) is then tangent to
aley) =€ atalx) =u+ % The center ¢ of 8, is symmetric in 8; to oo, and therefore
« () is symmetric in 8 to a "' (o) = 0. Thus,

r2 2

@ (€) = Xt ir v et
—Xx—1Ir X —Ir

which implies the center of 8 is

TR Sl
(: = = - l — T .
) x x2
Sinee ) passes through a{x) = u+ )l( the radius of 9 is
r
la(x) —c| ~ .

X

Note that, if x - 0, then this radius is infinite, and 8, would be a half-plane which
would not be disjoint from one of & or €;, a violation of M0. We conclude that x #£ 0.
l‘urthermore, since 8; is required to be in the horizontal strip between 0 and y, we
deduce that 5 < . or x> %’

The requirement that 8y and 8, be externally tangent is equivalent to

¢ (xin))=r+ L.

| ] ) r r
o+ - x ) - 1<‘C r -,) —r . 3.
| X x- x-

ar
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B ]
R

Now let us consider the third condition SG2. The common orthogonals to &) ané-.
g; are the vertical lines. Since 8q and 8, are bisected by the same vertical line, the red
parts of their centers must be the same. That implies & + — = x, or equivalently tlﬂ
quadratic equation :

x* - 6x--1=0,

T X
T 21442

guarantec the existence of the collection of six circles as described come from thg :
requirements that the 8;’s be disjoint from the n;’s. For each such pair of circles with "

centers cy,c; and radii ry,r, we derive an inequality from |c1 —c2| > r +r,. The
inequalities are rather generous, even if they are tedious to write down.

On the other hand, consider the other choice of third condition H2, that J is alsg
tangent to €;. This implies that the radius r of 8¢ is T/2 (half the width of the horizontaf
strip between €y and €;). Then equation (3.1) becomes

(o+2x)+iZ (122
I X Y)T, x?

Square both sides and simplify and we are left with

T |
___1 o
2( +x2

¥ —ox— 1 =+T.

Let’s suppose the tangent points of 8y and g to €p are x < 0 and y > 0, respectivelys
The tangent pomts of §; and T to € must have real parts between x and y. Thl& ;
implies 6 + ; >xand G-+ -); < y. Thus, by our equation and the condition T > 0, we '
have 6x+ 1 —x? = (6+ 1 —x)x = —1, or x> — 6x — T— 1 = 0. Analogous reasoning
implies that y?> — 6y — 1 — 1 = 0. Thus, the tangent points of the circles 8y and 1 to*
€p are precisely the two solutions to

2—cx-1-1=0, (3.4)

again be derived from the disjointness of the 8;’s and n;’s

The next proposition reveals the second symmetry of these patterns of six circles. 3
In fact, the existence of this symmetry is more general.
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Proposition 3.3. Lere;, 8, j 0,1, be circular disks with disjoint interiors such that
the following pairs are externally tangent:

(80781)7 (80781)’ (80’60)1 (61781)-

Suppose there is a Mobius transformation a(z) such that a(8¢) = 8 and a(g) = €.
I'ien there is a unique Mébius transformation b(z) such that b(g;) = 8; for j=0,1
und b commutes with a.

I'roof. To begin with, we may conjugate so that a(z) = z + 1 (the parabolic case) or
so that a(z) = Az for some A of absolute value at least 1. In the parabolic case, we
may then conjugate by a translation so that €, € are the circles of radius % centered
al 0 and 1, respectively. Since a(8g) = &;, it follows similarly that 8y and &; are
circles of radius % centered at points ¢ and ¢ + 1, respectively. Finally, since € and
&y are externally tangent, it follows that |c| = 1. Any commuting transformation is a
translation, and the unique one that satisfies the statement is then b(z) =z +c.

In the non-parabolic case, we may conjugate by a similarity z — ¥z so that the disk
¢y is then centered at 1. Let r,s be the radii of &9, 89, respectively. Since €, = a{g),
the center of €; is A and the radius is |A|r. Since €g is tangent to €;, we conclude that

A1
r= .
|A|+1

let X be the center of the disk 8y; since 8; = a(8p) the center and radius of 8; are kA
and |A|s, respectively. A similar argument to that for the €'s based on the tangency of

8o and &; proves that
s= [xA —x] = |xir.
A|+1
This establishes that the similarity b(z) = xz maps €; to 8; for j =0,1. The unique-

ness follows from the fact that any transformation that commutes with a nontrivial
similarity a(z) = Az is another similarity of the same form. O

Remark 3.4. In the non-parabolic case of Proposition 3.3 where the transformations
have the form a(z) = Az and b(z) = xz after conjugation, the similarity factors are

related by the equation
A1) _ k=1

A+1 x| +1
which comes from the calculation of the radius of €g by using the tangency of &g to
€1 = a(€p) and 8y = b(gp).

With the two transformations a and b, we can extend our original six circles by
considering all image circles a"b™(€n) for integers n.m and thereby obtain the cor-
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Figure 5: A spiral hexagonal circle packing. All the circles belong to one infinite double spira_i":
generated by a Mobius transformation a. After 16 steps along this spiral, we arrive at a circly
tangent to the original circle. The second picture shows the circles shaded with a differel'lis;E
choice of exactly 16 shades, showing how the circles align themselves into spirals mvanan!?
under a second Mobius transformation b.

responding circle packing. The extension of the cluster in Figure 4 (ii) is shown i
Figure 5. The surprise is that all the circles belong to the same double spiral. Tha&z
is, all the circles are a"(gg) for all integers n. We have shaded the disks a’(8p) foit
0 < j<15and A/(n) for 0 < j < 16 differently from the rest to show how the spiral':
arm ncstles against itself. In particular, after 16 steps from any given circle on ths'

spiral arm, we come to a circle tangent to the original circle. :

To highlight the combinatorics of this circle packing, we give each disk one of 165
different shades in succession along the spiral arm. The shades align themselves in 16‘*
new spiral arms shown in Figure 5. The second Mobius transformation b moves the:-'
circles along these new spirals. In fact, we have a'® = b. g

A diagram of the basic Doyle “flower” for the spiral packing of Figure 5 aftem»
conjugation is shown in Figure 6. We have marked the points 1, A, A%, ¥ and x/A t01

show the arrangement of the similarity factors we have discussed. ;_k.
We now introduce the analogue of conditions M3 and M4 for these circle packings.} ’f
:!

Definition 3.5. Wc say the family of disks {a"b™ (o)} is coherent if any pair of disks’y
are either the same or have disjoint interiors. b

.uis' Tt i

In the parabolic case, all the disks have disjoint interiors. In the non—paraboh
case, the coherent Doyle packings were analyzed in {BDS94], and the coherent square 3

grid packings are treated in [Sch97]. In these cases, coincidence of the circles amounts
to an equation of the form

LT

a?l=bP 3. 5)

for some pair of integers (p,q). not both zero. Generally, we will restrict ourselves to i
the case where the multipliers of a and b are of absolute value at least 1, and so the !
integers (p, q) are both nonnegative.

om0 VAl L

i
i
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Figure 6: A Doylc flower with centers marked and labelled in terms of the similarity factors A
and K. By repcatedly applymg a to the circle centered at 1 until after 16 steps we arrive back at
the circle centered at ¥ = A16

In [BDS94], it is proved there is a unique coherent Doyle packing satisfying equa-
tion (3.5) for any such integer pair (p,q) with p # 0, excluding a few small ones such
as (1,1),(1,2),(2,1),(2,2). The uniqueness is based on a circle packing rigidity the-
orem of Schramm. The rigidity of the square grid packings is treated in [Sch97]. We
would like to make one small observation that might not have been noticed before.

Proposition 3.6. The similarity factors of coherent spiral Doyle packings and coher-
ent spiral square grid packings are algebraic numbers.

Proof. First, let us conjugate the transformations so that a(z)} = g+ 1/z again, and so
that g = R and € =u+ R. The multiplier A of a satisfies VA + 1/\/X = —iy, by
considering the trace of a. In Proposition 3.2, we have determined the two choices for
8o. The tangent point x of & to & satisfies the quadratic equation (3.4) in the Doyle
case, and (3.2) in the square grid case. Picking one of these solutions x, the radius of
8o is T/2 in the Doyle case and given by (3.3) in the square grid case.

To determinc the second transformation b, we note that it shares fixed points with
«, which are given by

1
2,2= i(pi w2 +4).

Suppose that the signs are chosen so that

a(z) —z1 W dnts!

a(z) -2 -2
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Since a(0) -= oo, this means zp = Az;. Then the transformation b is given by

b(z)—n Lz u
b(z)—z2 z—2

We can determine the multiplier x of b by noting that b maps the tangent point of &y
and g;, which is oo, to the tangent point zp of 8y and &;. This means we have

20 — 21
K=
0—22

The tangent point in the square grid case is easy to determine:

2
20 —,\:—1—21r—x-|—1’l:1 2
The centers co,c; and radii ro,r; of 8y and 8; in either case were determined in the
proof of Proposition 3.2. Thus, the tangent point can be determined on the line seg-":
ment between ¢p and ¢7 as 79 = ﬂ%gj_‘_:%ﬂ_ After a small amount of algebra, we find
the tangent point in the Doyle case to be !

_ x(2+ px)
o142 !

Since ©,7 lie in Q(u,f,i) € Q(VA, \/7:», i), and x lies in a quadratic extension of,.z
Q(o,7), we see that k lies in a solvable algebraic extension of at most degree 16\
of Q(A). The coherence equation A7 = kP then may be simplified to a polynomial *
equation for A over Q. O}

We shall give some examples of the algebraic determination of these similarity {
factors. The first is the case of a Doyle packing with p = 1, g = 4, which is known v;
as the Brooks spiral (see [Ste0S5, Bro85]). In the configuration of Figure 4 (ii), we j i
should have €4 = a*(go) = 8, which is tangent to &y and €;. This implies €, = a(g;) 3
is tangent to €_; = A(gp) and €_,. That inspires the following calculation, 3

Lemma 3.7. (i) The image €_1 = A(gp) is the circle of radius 2lr centered at 2’ a
(ii) The image €, = a(€,) is the circle of radius 21; centered at yu— 5-

Proof. Let €_; have center ¢ and radius r. Since c is symmetric with oo in £_1, we |

will have a(c) symmetric with a(e0) = yin €. Thus, a(c) =7, and hence c = A(f7) =
1

E]

u = - 5z Since €_ is tangent to & at A(e0) = 0, the radius of € 1 is 211 i
For the second part, note that the order two rotation r(z) = y — z conjugates a into !

A, that is, rar = A. Thus, 82 = a?(gg) = rA?r(gp) == rA%(g;) = r(€_). Hence, €, has |
center y — 5- and radius - 2 O
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From Lemma 3.7, the disks € | and €; are tangent if and only if |u— -2% - -211—1 = 22';,

which simplifies to [u| - V2.
Suppose now the center of €. 7 is c. Then a(c) is symmetric with a(ec) = gin €_;.
‘Thus,
@) _ B
p—i 1—2itu

(
c)=—++
alc) = 5
Since a(c) = u+ % and i = |u|?> = 2, we can simplify the above to find ¢ = —fi -- ﬁ
Since €_3 is tangent to €, and 3(—p) = Sy, we see the radius is 2‘; The tangency
hetween €5 and € now yields

This reduces to 2|6 = |ju+| = 1. Inserting this into 62 4-t? = 2, it is a simple matter
(o solve for ¢ and 1, and we find

V3i—-1 . 1+3
+1 .

The similarity factor A may then be found by solving —iy = VA + ﬁ, although the
cxact expression is rather messy. Numerically, we have

u(1,4) = 0.366025403784440 -+ 1.36602540378444 i,
A = 0.194235974222535 + 1.61161245101347 i,
|A| = 1.62327517874938.

The Brooks spiral is shown in Figure 7, colored with 4 shades in succession. One
can detect the progression of the spiral arm by observing that €; and €, always have
distinct shades, while £; and €;_ 4 are always tangent disks of the same shade.

Remark 3.8. The requirements that €, and €_ lie in the strip between & and €; are
therefore equivalent with the condition T = Sy > 1. If we require that €; and €_; also
have disjoint interiors, from the above lemma we may derive the inequality

lul > V2.

This gives us some preliminary estimates for values of u corresponding to coherent
circle packings of cither type. The same estimates apply to Maskit’s Tj ; as well.

A more symmetric version of the equations determining A and k may be extracted
from Proposition 3.6 (see [BDS94]). This version would be the coherence equation
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Figure 7: Two Doyle spirals: The left frame is the Brooks spiral, corresponding to p = 1,

g = 4. The right frame is a portion of a pattern explored by R. Weedon. It corresponds to'
p=20,9=40. :

together with the tangency equations.

A—-1 k-1  |A—x]
Al +17 |x]+1 A+l

(3.6).';,

R. Weedon of the United Kingdom has explored the families of Doyle pack-

ings where g = p or ¢ = 2p. A general observation in {BDS94] is that when r =

GCD(p,q) > 1 there is a rotational symmetry of order r in the corresponding Doyle :
packing. That is, A?/"x 9/" is an r-th root of unity. For g = p the the equations (3.6)

and (3.5) may be solved to yield

n n
w = tan® = +sec —, t=w+w?2-1.
P

For g = 2p, the solution may be obtained by the following recipe.

V5+4+4c—2c~1 , 1+w

T
¢ =Cos —,

2 ’ T et+w?’

In both cases, the multiplier is given by A = £exp %‘. The pattern for p =20, g =40 is
shown in Figure 7.

The complexity of the equations in general seems to make exact formulas difficult
to obtain. However, using Newton’s method again, it is possible to numerically solve
the algebraic equations derived in Proposition 3.6. We made use of several Maple pro-
cedures to accomplish this. First, two procedures multiplier and similar calculate
the corresponding A and K to a given y; these are simply a matter of extracting square

et s B ews e e am o eie s

" e i T S i U T o RS- w0
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roots carefully. The ilerative part comes in solving the coherence equation
Ly 4(y) =multiplier(u)? — similar(u)? =0.

Unlike the case of the Maskit trace polynomials, this equation is only a real analytic
function of u, not complex analytic. We use a two-dimensional real Newton’s method
(o solve for the solution u. We define a two-dimensional vector valued function:

F o\ (RL,4(c+it)
1) \SL,,(c+i1)

. . . o7 .
One pass of Newton’s method consists of starting with a seed value (:) , numeri-
0

cally computing the jacobian matrix

oF|  JF
_ {36 &
Jr= F,  IF
o
by means of some very small increments in ¢ and 1, and then solving the linear sys-
Ac (o] L
tem Jp (A ) =-F 1:0 for the change in &, t. The refined approximation of the
T 0
solution is then 6y |- AG, Tp + At. With a good initial guess, the process produces a
solution very quickly.

By moderate diligence, we compiled the constants u(p,q) for p < 6 and g < 20 for
both the Doyle and the spiral square grid packings. We have displayed these values
for the Doyle packings in Figure 8. Typically, ten digits of accuracy requires less than
ten Newton passes, once a good seed value has been found. The chart shows that
the values of (2, q) follow closely the shape of the Maskit T; ; boundary (which is
plausible since both circle packings are composed of two double spirals), while the
values of u(1,q) follow the shape of the boundary of another deformation space of
Koebe groups (see [Par95]; Wada communicated that this is essentially the same as
the Riley slice).

The chart makes clear that the constants u(p,q) have a strong asymptotic pat-
tern. We may elucidate this pattern by first computing v/A from v/A + ﬁ = —iu (so
that A is the multiplier), and then plotting the expression 1—_’——% for all the data points
shown above. Figure 9 shows that the points for Doyle packings lie on an approxi-
mate hexagonal lattice, while those for the square grid packings lie on an approximate
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Maskit boundary

H(1,3)=1+1i *(1,3)

Koebe boundary Koebe boundary

Figure 8: Chart of the constants u for the (p,q) coherent Doyle packings (left) and square grid
packings (right). Superimposed on the plot are traces of Maskit’s boundary of 77 ; and of the
boundary of the Koebe slice of groups {(a,b) with abAB parabolic and b elliptic of order 2.

square lattice. In fact, the asymptotic formulas appear to be

i i 1 ,
= L (g pemh) (Doyle)
1- V )\'(P,q) 2 n

i 3i 1 , .
l—_ﬁ_—(ﬁj = -QE + E(q - pl) (SquareGnd)

For large p and g, only a few passes of Newton’s method are required to obtain the

value y(p,q) to high precision from this seed value. In [Wri87], a similar asymptotic

formula for the Maskit cusps u{1/n) was conjectured based on algebraic manipulation

of the corresponding trace poiynomials. In the above form, this asymptotic formula
would be expressed as

i _(m=4)i n ;
1_m— o +7l: (Maskit)

£ e a0 ks A B s e

The main term (and probably more) was established by Miyachi in [Miy02, Miy03]. ;
It’s possible similar geometric methods could be used to establish the asymptotics of |

the coherent circle packings.

4. Double cusp groups on the space of pairs of punctured tori

For the remainder of the paper, we concentrate on the problem of maximal cusps on
the boundary of deformation spaces. In this section, we consider the space of qua-
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Figure 9: Plot of for VA + —iu(p,q) for the Doyle packings (top) and square grid

packings (bottom) The points follow asymptotic hexagonal and square lattices, respectively,
cdge length 1 7+ Some points are labelled with the corresponding (p,q). The value of g increases
from left to right, and the value of p increases downward.

sifuchsian groups (a,b) with trabAB = —2 which represent a pair of once-punctured
tori. We'll refer to this as PPT space for brevity. One choice of complex parameters
for this space is the pair of traces (tra, trb). This is a two complex-dimensional space,
and there is consequently a much more complicated boundary. In the interior of this
space, all the words in G are hyperbolic except for conjugates of powers of abAB. A
maximal cusp group on the boundary has two additional classes of words becoming
accidentally parabolic, corresponding to a simple closed curve on each torus being
pinched to a point. The two accidentally parabolic words are again conjugate to pow-
ers of the words of the form we defined in Section 2, w,, and w,; for some pair of
different fractions p/q, r/s. Given such fractions, we may seek a maximal cusp by
solving the two algebraic equations

Uw, /e = 12, rw, /s = 2.

for solutions (tra,trb) lying on the boundary of quasifuchsian space. There will be
one solution corresponding to pinching the p/q curve on one torus and the r/s curve
on the other torus, and a second solution corresponding to pinching the r/s curve on
the first torus and the p/q curve on the second. By Theorem III of [KMS93], these
two points are represented by anticonformally conjugate groups in PSL(2,C).
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One might suspect that the extra degree of freedom makes this task significantly
more difficult than the problem of finding cusps for Maskit’s 71 ;. However, there is a
very useful, labor-saving fact: every maximal cusp on the boundary of quasifuchsian
space is conjugate to a maximal cusp on the boundary of Maskit’s 7; ; or its mirror im-
age T 1 under complex conjugation. Essentially, no new groups need to be unearthed
to calculaie the maximal cusps for quasifuchsian space. We will give only a few ex-
amples to show how to calculate cusps on quasifuchsian space, and we shall again
emphasize the circle web that reveals the limiting Schottky nature of these groups.

The key to finding the cusp corresponding to the pair fractions (p/q,r/s) lies in
the Farey tesscllation diagram shown in Figure 9.7 of Indra’s Pearls, which gives the
structure of the rational .numbers relative to the process of the Farey addition 5% of
fractions p/gq, r/s which are Farey neighbors, meaning that rg — sp = 3:1. Rather than
reproduce all the Farey theory explained in Indra’s Pearls, we shall just show a chart
indicating the use of Farey addition to move from one fraction to the next.

As a first example, we take the fractions (5/8,—7/9). The fraction —g/p is some-
thing like the “antipodal” fraction to p/gq, so that this pair, while not antipodal, is in -
some sense spread far apart. In Indra’s Pearls, we show some antipodal Fibonacci frac- .
tion pairs approximating a doubly degenerate boundary group. We begin by charting
the edges in the Farey tessellation separating the two fractions as shown in Figure 10.

Each roughly horizontal edge in the chart connects a pair of fractions (p/q,r/s) :
with rg —sp = %1, i.e. Farey neighbors. The change from one pair of fractions to -
the next as we follow the chart from top to bottom consists of a single Farey addition .
(upward or downward). This chart is always uniquely determined by the original |
pair of fractions. To construct the righthand chart, we consider the same sequence
of “pivots” or edges in the Farey tessellation starting from the edge between 0/1 and
1/0, with 1/0 positioned at one of the original fractions (in this case -7/9). At the -
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end of the sequence of moves, in the position of the other fraction in the original pair
there will be an equivalent fraction h/k, defining a Maskit cusp y == u(h/k) for which
Gy = {ao,bo) has the properties that w /o = B and wy,/ are both parabolic. Now we
turn to the fractions in the righthand chart that are in the same positions as 0/1 and
I /0 in the lefthand chart (both pairs are circled). In this example, we construct a group
{a.b) such that

lra= trw3/7(a0,b0), trB= trw4/9(a0,b0), traB = trw7/16(ao,b0).

Since w37 and w4/ are generators of G, it follows that the new group is conju-
gate 1o Gy, This new group will have the property that trw_;9(a,b) = trBo = 2 and
trws/g(a,b) = trwaq 101 (a0, bo) = £2, and thus corresponds to a maximal cusp, as-
sociated to (%, —%) or (—%, %). The same argument succeeds for any pair of distinct
[ractions.

An easicr way around the arithmetic is to carry out these operations inside the
group SL>(7Z). For each pair of fractions on an edge (E”, L) from left to right, associate

the matrix | ° , which must have determinant :t 1. Multiply the top row by —1
P q

if the determinant is —1. Suppose A is the matrix so obtained for the top cdge of the
chart and B is the matrix for the bottom edge of the chart. Then there is a matrix U
in S1.5(Z) such that UA = B. The equivalent fraction we calculated above is just the
h k

K

top row of this matrix U =BA™' = . The fractions 3/7, 4/9 that were used

at the end to find the traces of the desired maximal cusp group come from the rows of
the matrix A~1.

To continue with our example, our boundary tracing program computes the Maskit

cusp
u(44/101) = 0.88884237349 + 1.6320285101 1.

From that value, we can calculate

trwsy/; = 1.5720620876 — 0.6328874943i,
trwao = 1.4493809001 + 1.4142149587,
trwy/16 = 1.5223946854 +0.9431138430i.

Formulas such as those given in Indra’s Pearls may now be used to generate the ma-
trices a, b of the maximal cusp group.

We are interested in the chains of circular disks that occur in the ordinary set of
the maximal cusp group associated to (p/g,r/s). The same reasoning as in Section 2
shows that the group generated by ABab and w, ,(a,b) is a fuchsian triply-punctured
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sphere group. This group stabilizes a disk passing through the tixed points of ABab
and wp/q(a,b) and stabilized by the commutator ABab (a convenient third condition
since the commutator is usually easy to compute). That gives us one disk Dy = §p in
the ordinary set, and we obtain the circle chain by applying a and b according to the
dynamical rules stated in Theorem 2.3. However, the same process applied to the disk
D, = g stabilized by ABab and passing through the fixed point of w,/s(a,b) gives a
second chain for the fraction r/s. A corollary of the Keen-Series Theorem 2.2 is that

the two chains link up in a meaningful way. First, we will state the pattern only for
positive fractions,

Theorem 4.1. Given a pair of distinct fractions 0/1 < p/q,r/s < 1/0, for the p/q,’
r/s cusp group G = {a,b) on the boundary of PPT space there are disjoint open dzsks
£,0<j<r+s anddj, 0< j < p+ag, such that

a(gj) =¢gjir for0<j<s; b(ej) =¢&jys for0<j<r

a(8;) =8j1p for0<j<g; b(8;)=8j+g for0<j<p.
Moreover, the following pairs of disks are externally tangent:

* (8,,8j+1)for0< j<p+q-1; ;

* (ej,&4+1)for0< j<r+s—1;

(€030}, (€ 8p), (60:3y), (ErvarBpag)

Conversely, given transformations a, b, disks €;, 8; satisfying all these conditions,
{a,b) is conjugate to the (£, %) cusp group.

Unlike Theorem 2.3 where the question of existence is a little more subtle, this |
theorem is simply an exercise in the arithmetic of SLy(Z). The third set of tangencies
listed are at the commutator fixed points ABab, BabA, bABa and abAB (respectively).

Since our examples will involve some negative fractions, we now state the modifi-
cation necessary for one negative fraction.

;
4
1
1
i
b
§
i
|
Theorem 4.2. Given a pair of fractions 0/1 < p/q < 1/0, —1/0 < —r/s < 0/1, for %
the p/q, r/s cusp group G = (a,b) on the boundary of PPT space there are disjoint }
open disks €;, 0 < j<r+s, and §;, 0 < j < p+q, such that i

a(g;) =¢€jr for0<j<s, B(gj)=¢j4s for0<j<r 1

a(8j) =8;3, for0<j<g; b(8;) =8juq for0<j<np. %

Moreover, the following pairs of disks are externally tangent:
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Figure 11: Chains of circles in maximal cusp groups on the boundary of quasifuchsian space.
Left frame: the (%, —%) group; right frame: the (%, %) group.

* (8;,0j41)for0< j<p+tgq-1;
* (€j,€+1)for0< j<r+s-1;
° (SS,SQ), (€r+.s'78p), (80,8[1), (£r78p+q)»

The converse holds as in Theorem 4.1.

Figure 11 shows the circle chains for the 5/8, —7/9 maximal cusp group. The
6 circle chain for 5/8 (lightly shaded) and the € chain for —7/9 (darker) have been
numbered according to the above theorem.

Again we connect all pairs of tangent points on a given disk by orthogonal arcs to
the bounding circle. These arcs piece together into four simple closed curves bounding
the Schottky blobs. The combinatorial mapping rules given in Theorem 4.2 imply the
Schottky relations, that a maps the interior of the A blob onto the exterior of the a blob
and b maps the B blob onto the exterior of the b blob. Any pair of transformations that
map a web of circles with this combinatorics must generate the (5/8,—7/9) double
cusp group, up to conjugacy.

There may be external tangencies that do not play a role in the definition of the
Schottky curves. As an cxample, Figure 11 shows the (%, %) double cusp with the
circle chains shaded darkly for 3/4 and lightly for 1/5. The orthogonal arcs are also
drawn, and once again dclineate four simple curves that obey the Schottky mapping
conditions. One may see that there are two extra tangencies between dark and light
disks not accounted for (nor precluded) by our theorem. The situation is more ex-

trcme when the pair of fractions (s, £) consists of Farey neighbors, because every
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such double cusp is conjugate to the Apollonian Gasket group. 'The complement of
the corresponding web of circles consists only of disjoint ideal circular triangles.

5. Cusp groups on Riley’s slice

In this section, we study the maximal cusps on the boundary of the deformation space
of two-generator groups (a,b) where both a and b are parabolic and the quotient of
the ordinary set by the group is a four-times punctured sphere. These cusp groups are
also maximal cusps on the boundary of the space of Schottky groups of genus two, but
they are not in general cusps on quasifuchsian punctured torus space. This is called
the Riley slice of Schottky space after Robert Riley who made the first detailed map
of this space. '

This is a one-complex-dimensional deformation space, and we shall employ the

parametrization
1 0 1 2
== ) b e

of the associated groups Gp = (a,b) (we will recycle some notation from Section 2,
since no use of that material will be made). When |p] is sufficiently large, the ordi-
nary set of this group is connected, and the quotient surface is a four-times punctured
sphere. The domain of p for which this is true is topologically a punctured disk (with
the puncture at o), with a cuspy roughly diamond-shaped inner boundary symmetri- :
cally arranged around the origin. An analysis of this boundary and the cusp groups is
found in [KS98] (a revision of [KS94]).

The cusps on the boundary of Riley’s slice are again associated to rational numbers
p/q,0/1 < p/q <2/1, with p(2/1) = p(0/1). The rational number again describes
the simple closed curve on the four-times punctured sphere that has been pinched to
a point, as well as the word in the group G that has become accidentally parabolic.
What we shall focus on here is how the rational number manifests itself in a web of
circles in the limit sct.

The following theorem is justified in [KS94].

Theorem 5.1. Given a fraction 0/1 < p/q < 2/1, let G, = (a,b) be the p/q cusp
group on the boundary of Riley’s slice. There are disjoint open disks 8;, 0 < j < 2gq,
such that, we have

a(d;) =8y ; for0<j<gq.  B(8;)=8pi25; forp<j<p+aq

where we define §; for all integers j by the periodicity condition 812, = 8;. Moreover,
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the following pairs of disks are externally tangent:

. (8j,8j+|)f0r0 <j<2q;
* (80,8g), (8p,8p+q)-

With the normalization (5.1) of Gy, the houndaries of 8, and 8., 4 are horizontal lines
(tangent at =), and 8 and 8, are tangent at O, the fixed point of a. The disks 8; and
O are equivalent under Gy, if and only if j, k have the same parity.

Again, given suc'i?“;“cirjcle web for ap, b, we can conclude p is the p/q cusp on
Riley’s slice. '

We illustrate this first in Figure 12 with the 1/3 cusp group which, in our setup,

turns out to have
p =—0.75-0.6614378278i.

The circles are labelled & through ds in accordance with the theorem, with 8¢ being
the same as 8y. The shades of the disks indicate their equivalence class under the
group; the picture shows clearly how the equivalence class alternates in order around
the chain of circles.

As before, we have also connected all the tangent points in the chain with orthogo-
nal arcs to the circles. These piece together into four Schottky blobs which are paired
by a and b according to the Schottky mapping ruies. For example, the tangent chain
8y — 8; — 8 — &3 is mapped by a onto the chain 8¢ — 85 — 4 — 83, and that im-
plies that the interior of the A blob is mapped onto the exterior of the a blob. Again,
the geometry of these external tangencies and Schottky curves immediately implies
by Klein’s combination theorem that the group is discontinuous and freely generated
by a and b. With a little more work, this circle web identifies the group as the 1/3
cusp group. The figure also shows all the visible part of the limit set of the group.

We have not revealed the recursive definition of the Riley p/q words comparable
to the one given for Maskit p/q words in Section 2, but the dynamical definition can
be read off the web of circles. The key is to keep track of a pair of tangent circles
under the mapping rules for a and b. As a shorthand notation, we use i A j to-denote
the pair of disks &;, §;, which are presumed to be one of the tangent pairs given in
Theorem 5.1. Each pair of tangent disks lies on the boundary of precisely two of the
four Schottky blobs. That means we can apply either of the transformations taking
those blobs to the paired blobs and we will obtain another tangent pair of disks in the
web of circles. That new pair will also lie on the boundary of precisely two blobs, and
again there will be two possible transformations to apply. However, one will just lead
back to the original pair of circles. Thus, if we continue to choose the new direction,
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we will gradually bujld up a word in the group that maps oy original pair of circles
to itself, By Lemma 2.2, that word is parabolic and stabilizes the tangent point of the

Pair of circles. That will be oyr Riley p/q word, up to conjugacy,

Let’s begin this Jjourney for the | /3 group starting with the pair OA I at the lower
left in Figure 12, That lies on the boundaries of the A and B blobs, so that we can
apply either g or p, We choose to begin with a; the other chojce would simply lead

we conclude the €usp group occurs at 5 solution p to rBABaba = —2, The reason is
that a triply-punctured sphere group (u,v) with , v and uy parabolic can never have
a representation in which Cu=tv=tryy =2, Note that the fractions 0/1 and 1/1
arc somewhat special cases, as the groups are fuchsian (the triply-punctured sphere
group), and the above procedure has to he suitably interpreted to produce the correct
words. The second picture in Figure 12 shows the more complicated 5/26 cusp group.
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6. Maximal cusps in the Schottky space of genus g

In this final section, we wish to cull the common themes running through our previous
cxamples into a model of the geometry of maximal cusps on the boundary of Schottky
space of genus g. In particular, we will define the circle web of a maximal cusp and
describe some of its basic properties. Let G be a discrete group freely generated by the
Mobius transformations az,...,a,. We shall assume that G is a maximally parabolic
proup. By Theorem II of [KMS93], G is geometrically finite. By this and Theorem 2
in [Mas81], we know that G is an accessible point on the boundary of the Schottky
space of genus g, meaning that G is an algebraic limit of Schottky groups. By Theorem
I of [KMS93], every component of the ordinary set of G is a circular disk, on which G
represents a triply-punctured sphere. The circle web is a finite selection of these disks
determined by the nature of the limit points on their bounding circles.

The infinite words in the generators a:Itl yooo ,agLl are the usual infinite sequences

of choices from the generators or their inverses, satis{ying the rule that no two consec-
utive terms are inverse to each other. The space of infinite words is endowed with the
dictionary topology. This space is also known as the completion (or boundary) G of
the group G relative to the given generator set. This notion was introduced in [Flo80],
where it was proved that there is a continuous mapping from G to the limit set A(G)
of G. In this case, the mapping is defined by sending the infinite word w = ujupu3 - - -
to the limit point ¢(w) = limy_e g1t - - - Uy (z) for almost any seed point z. Floyd also
proved that the mapping ¢ is injective everywhere except at the inverse images of
tixed points of parabolic elements of G, where it is two-to-one. If z is the fixed point
of a parabolic word p with inverse P, then ¢! (z) consists of the two infinite words
pppp--+ and PPPP- .., allowing for some cancellation.

With this notation, we may now divide the limit set A(G) into subsets defined by
A(a) = {z C A| z= ¢(aw) for some infinite word aw beginning with a}

for any choice of a from {af',...,a¥'}. We now define the circle web as the circles
that separate these subsets of A(G).

Definition 6.1. For a maximal cusp group G on the boundary of Schottky space, we
define the circle web of G, relative to the designated generators a}*‘l , to consist of each
circular disk in the ordinary set of G whose boundary circle contains points from at
least two different subsets A(a), a € {a{",...,a'}.

In the topology of the space of infinite words, the subset of those words beginning
with a fixed prefix is closed. Since the mapping ¢ is continuous by Floyd’s theorem,
cach of the subscts A(a) is closed as well.

In [Mas83], Maskit gave a general description of the collections of words that may



v e wr rT RIS

become parabolic in a deformation of a function group. In the case of a maxima§
cusp group on the boundary of Schottky space of genus g, all parabolic words are’
conjugate to a power of one of a list of 3g —3 words corresponding to a maximail
system of isotopy classes of disjoint simple closed curves on a surface of genus g
or alternatively a pair-of-pants decomposition of this surface. Each parabolic wor&‘
is doubly cusped (see [Mas81]), meaning that it fixes two disks in the ordinary sett
which are externally tangent at the fixed point of the word. ;

In the free group, a word # of minimum length in any conjugacy class must bg
such that u and its inverse, & begin with differént choices from the generators aj: '
1 < j < g. Otherwise, u would be of the form avA, and thus conjugate to a shortet
word v. If u has length n which is minimal in the conjugacy class of u, there are af
most n elements of length n in the class of u, namely, all the cyclic permutations of u}_-
Furthermore, if u is not a power of another element, then all the cyclic permutations of
u are distinct words. The fixed points of a cyclic permutation w of u correspond to twoi;.;
distinct infinite words www--- and WWW - -, which begin with different generatoﬁ.
letters, and thus belong to two different subsets A(a). Since the mapping from infinité:
words to limit points is at most 2-to-1, this also implies the fixed points of distinct
cyclic permutations of u are different, given that u is not a power,

Each of these fixed points of minimal length parabolic words is a tangent point’
between two circles in the circle web. If w;, 1 < j < 3g — 3, is a maximal list of
non-conjugate and non-inverse minimal length parabolic words in the maximal cusp
group G, the number of these tangent points is precisely ¥ ; (w;|, where |w| denotes ¥
the length of the word w. Each circle in the circle web must contain at least two of 35§
these fixed points, dividing the circle into arcs each belonging entirely to one of the %“5
subsets A(a) of the limit set. These observations prove the following. éé

Proposition 6.2. There are only finitely many disks in the circle web of a maximal
cusp group To be precise, letwj, 1 <Jj<L3g-3 be a maximal list of mim'mal length A

cyclic permutations of these words are tangent points berween pairs of disks in the 5'
circle web. The number of tangent points is thus the sum of the lengths of this list of .}
parabolic words, and the number of circles is at most this same sum. X

Each circle in the web contains at least two of these tangent points. Connect the
consecutive tangent points going around the circle by arcs which are interior to the
circle and orthogonal to it. We will call these the orthogonal arcs to the circle web. i
Label an orthogonal arc with generator a if there is an arc of the boundary circle 4§
connecting the endpoints of the orthogonal arc and belonging entirely to the subset
Afa) of the limit set. Each orthogonal arc will then have one or two generator labels. If :
it has two labels, the corresponding circle in the web contains only that one orthogonal
arc. The orthogonal arcs, without the labels, are all drawn in Figures 2, 11, 12.
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Figure 13: Possible meetings of the orthogonal arcs at a tangent point between two circles in
the web.

Consider the orthogonal arcs meeting a given tangent point between two circles in
(he web. The tangent point is the fixed point of a parabolic word beginning with gener-
ator a and ending with generator B, and a and B are non-inversc. Thus, the orthogonal
arcs ending at that point are labelled a or b or both. Then, in each circle, there are one
or two orthogonal arcs ending at that tangent point. The three possibilities for these
arcs and their labels are shown in Figure 13.

For a particular gencrator a, now consider only the collection of orthogonal arcs
lubelled with a. By the previous paragraph, these arcs form a combinatorial graph in
which each vertex has degree 2. Thus, this graph is a disjoint union of loops. We
would like to prove there is exactly one loop. There must be at least one since some
of the list of parabolic words must include a as a term, for otherwise we could further
deform the group to one in which ¢ is also parabolic, contrary to our assumption of
maximality. (Since the list of parabolic words does not include a as a term, we are
free to define a to be a parabolic transformation that identifics two very small tangent
circles inside a fundamental region for the group generated by the other generators.)

To prove there is only one a loop, we need a more precise description of the list
of parabolic words w),...ws,_3. We consider the corresponding simple closed curves
®1,...,03;3 on the associated surface of genus g. At the same time, there are disjoint
simple closed curves ¥; on the surface corresponding to the generators a;, 1 < j < g.
These are the curves coming from the pair of loops in the plane that are paired by the
generators of the Schottky group. We shall assume that all the curves are arranged to
have minimal intersections. An example of a maximal system of six disjoint curves is
sketched in Figure 14,

The word associated to each simple closed curve @; may be discovered by fol-
lowing the curve through its intersection points with each of the generator curves ;.
Label one side of y; by the generator a; and the other side by the inverse alTl accord-
ing to the loops in the plane that are paired by a;. Starting at one intersection point of
the curve w;, we pick one direction and follow the curve to the next intersection point
in that direction. If the curve passes from the ajTl to the a; side at that intersection
point, we write down the letter a;; otherwise, we write down a j‘l. Continuing to the
next intersection point in that direction, we make the analogous observation and write

the next generator to the left of the previous way. In this way, when we return to our
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Figure 14: A system of six disjoint loops on a surface of genus 3. The generator curves aré
labelled by the respective generator a, b and c¢. The curves correspond to the words b, ¢, bG;;
acAB, baa and abAB. Dotted lines signify parts of the curve on the back side of the surface.

starting point we will have written down the word corresponding to this curve with thez
given starting point and given direction.

This associates to each intersection point two words, one for each direction. Tha
collection of words obtained in this way are all the cyclic permutations of the original
list wy,...,ws3,_3 and their inverses. The words associated to the intersection points,
lying on the generator curve 7Y; are all those words beginning with a; and all those®’%
beginning with a; =1 (in the reverse direction). As we follow the curve Y; around 1ts= 3
handle, adjacent 1ntersectlon points either belong to the same curve ; or they belong vl
to two distinct curves that bound the same pairs of pants.

third bounding curve of the pair of pants such that uj is conjugate touy Ly 1t follows '
then that in the maximal cusp group G, when all three words arc parabollc, the words
uy and uy generate a triply punctured sphere group (since ul"uz is also parabolic)
corresponding to one of the circular disks in the ordinary set of G. Since u; and us __;
both begin with a; and do not end with a}'l, it follows that they are connected by an
orthogonal arc labelled a;.

If the adjacent intersection points actually lie on the same curve @; and the curve @&
passes through 7; in the same direction at the two points, then this curve forms two §
boundary components of a pair of pants. The third boundary component again cotre-
sponds to a conjugate of u; ' uy. The same argument as before again proves that u; and
uy generate a triply-punctured sphere group in the maximal cusp, and that the fixed | ‘
points of u; and u; are connected by an orthogonal arc.

Finally, if the same curve passes through adjacent points on 7y, in opposite direc-
tions, then uy and u; ! are conjugate words, and the conjugating word u3 corresponds
to one of the other two boundary components of the pair of pants bounded by our
original curve. That is, u, 1= usujus . In the maximal cusp group u;, u2 and u3 are
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all parabolic, implying the again that the fixed points of u; and u, are connected by an
orthogonal arc in the circle web.

Thus, the orthogonal arcs labelled with a; pass through in order the fixed points of
the words cotresponding to the intersection points lying on y;, which are all the words
heginning with a;. This proves there is exactly one loop of orthogonal arcs labelled
aj. We summarize our work as follows.

Theorem 6.3. Let G = (ay,...,a,) be a maximal cusp group. Let wy,..., w3g_3 be
the complete list of minimal length parabolic words which are non-conjugate and non-
inverse. Label each disk 8 in the circle web of G with each generator ‘a’ among the

u;” ’s for which 8 has nonempty intersection with A(a). The following are true.

(i) The disks labelled ‘a’ form a loop of disjoint disks 8y,...8, in which each §;
is tangent to 8,1, and d, is tangent to 8y. The number n of these disks equals
the number of a’s and a™"’s occurring in the expressions of the minimal length

parabolic words wy, in terms of the generators of G. Call this loop the ‘a’ loop

of circles. The ‘a’ and ‘a™"’ loops contain the same number of circles.

(ii) The orthogonal arcs labelled ‘a’ form a simple closed loop passing through the
tangent points of the ‘a’ loop of circles. The subset A(a) of the limit set consists
precisely of all the limit points contained in one component of the complement
of this simple closed curve.

(ili) The generator ‘a’ maps the ‘a™'’ loop of circles onto the ‘a’ loop of circles in
reverse order relative to the subsets A(a*") they enclose.

The circle web can be described by a combinatorial graph where the vertices are
the disks and the edges correspond to pairs of disks which are tangent at fixed points
of minimal length parabolic words. (The right side of Figure 11 shows there may
be other tangent points, not corresponding to edges.) The previous theorem shows
that this is a planar graph with 2g faces labelled by each of the generators and their
inverses. The degrees of paired faces, meaning the number of vertices around each
face, are equal.

On the other hand, by taking a planar graph with 2g paired faces, with paired
faces of equal degree, we may choose mappings of the vertices around the ajTl face
onto those around the a; face in reverse order. Then by following these mappings
around the graph we may calculate the word stabilizing each vertex. This process was
described at the end of Section 5 for a Riley group. If we end up with a collection of
3g — 3 words corresponding to a maximal system of simple closed curves on a surface
of genus g, we may solve the polynomial equations derived from setting the traces of
these words equal to =2 to find matrices that generate a corresponding maximal cusp.
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Figure 15: Circle webs for maximal cusps on the Schottky space of genus 3. The orthog-;
onal arcs connecting the tangent points again piece together to form Schottky “blobs.” The.
paired blobs are marked a — A, b «— B, ¢ «= C, in such a way that a takes the interior of-
the A blob onto the exterior of the a blob, etc. The shade of the disk indicates its equiv-’
alence class. The collection of minimal length parabolic words for the righthand picture is.

{b,c,bC,acAB,BacBAbCAba,BacBaaa}.

In this way, in a future work we hope to calculate a catalog of many cusps and some -

idea of the geometry of the boundary of Schottky space.

Two precise examples are shown in Figure 15. The left corresponds to the system

of curves sketched in Figure 14. The second comes from a more complicated system

of curves.
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Circle packings on surfaces with projective structures:
a survey

Sadayoshi Kojima,' Shigeru Mizushima and Ser Peow Tan

Abstract

This paper surveys our on-going study of the moduli space of pairs of a surface
with a complex projective structure, on which the circle makes sense, and a circle
packing on it whose combinatorics is fixed. A conjectural picture, the results
obtained so far and a list of problems for further study are discussed.

1. Introduction

The study of circle packings dates back to antiquity, but has seen a surge of activity in
the last thirty years, especially after Thurston’s [Thu80] re-interpretation and gener-
alization of the circle packing theorem on the sphere by Koebe [Koe36] and Andreev
| And70} to surfaces of higher genus. Classically, this involves the study of circle pat-
terns as defined on a surface with a Riemannian metric. Circle packings have found
applications to various fields including complex analysis, hyperbolic geomeltry and
even probability theory. On the other hand, the study of surfaces with complex projec-
tive structures, called projective Riemann surfaces in this paper, is relatively modern
(we avoid the terminology projective surface as it has a different meaning in algebraic
geometry, the terminology CP'-surface is also used in the literaturc). It has also seen
much activity in the last couple of decades due to its connections with hyperbolic
geometry, Kleinian groups and Teichmiiller theory.

We are interested in the interplay between these two fields, specifically, circle
packings on projective Riemann surfaces. The first observation is that circles/disks are
fundamental geometric objects in 1-dimensional complex projective geometry. This
is despite the fact that PGLy(C) (= PSLy(C)) does not preserve a spherical metric (in
fact, any metric) on the Riemann sphere C. Thus “circles” on a projective Riemann
surface are not metric circles in the usual sense, rather, they are homotopically trivial
simple closed curves which develop onto (round) circles in C via the developing map.
This is an important distinction as methods which rely on parameters such as the radii
of the circles do not come into play here. Circles on a projective Riemann surface
are well-defined, since PGL,(C) acts as Mobius transformations of € and Mébius
transformations preserve circles.
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Our main focus will be on the moduli space of all pairs (S, /) consisting of a pro- .
jective Riemann surface S, and a circle packing P on § with a fixed combinatorial pa
tern. Using the Koebe-Andreev-Thurston theorem as a starting point and prototypé,
and setting up a conjectural picture which we will discuss in §5 based on the segs *
ond author’s result [Miz00], we studied the intrinsic and extrinsic properties of sucll_
moduli spaces in [KMT03a, KMTO3b}. This paper surveys these on-going studies by
describing a foundational basis, the results obtained so far, and a list of problems fot’
further study.

2. Projective Structures

Throughout this paper, we use X, to denote a closed, orientable topological surface o
genus g without any auxiliary structure. A projective structure on X, is a geometri
structure modeled on the pair of the Riemann sphere C and the projective linear grou
PGL,(C) acting on C by orientation preserving projective transformations, that is, thei?:
Mobius transformations. Since Mobius transformations are in particular holomorphi -
and one-to-one, a projective structure automatically induces an underlying complex‘,;
structure. However, requiring the transition maps to be Mobius transformations 1s§
far more rigid than merely requiring that they be holomorphic one-to-one maps, sois
different projective structures can have the same underlying complex structure. ?%

Let S be a surface with a projective structure, called a projective Riemann surface,; ﬁ
homeomorphic to X;. The notation § is thus to denote not just the topological surface
L, but one equipped with a projective structure. We always attach to § a referenc
homeomorphism A : X, — § for marking. Then two projective Riemann surfaces, sayf

a projective isomorphism ¢ : §; — 52 such that ¢ o iy is homotopic to A,

Associated to S are the developing map,
dev:S — (E,

defined up to composition with projective transformations, where S is the universal ff' '
cover of S, and the holonomy representation,

p:m(S) — PGLy(C),

defined up to conjugation by projective transformations. The developing map is equivari
ant with respect to the holonomy representation, that is,

dev(x.g) == (dev(x)).p(g)
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Conversely, suppose we are given a topological graph t on ¥, such that T is cova.
ered by an honest triangulation in the universal cover. We then would like to find
complete description of the set of all pairs (S,P), where S is a projective Riemang’

surface equipped with a reference homeomorphism 4 : ¥, — S, and P is a circle pack‘-"’g g
ing on S such that its nerve is isotopic to h(t). Here two packings P; and P, on the,
same surface § are equivalent if there is a projective automorphism of § isotopic t¢
the identity which takes P; to P, and we are interested in the equivalence classes o
packings. Henceforth, for clarity of exposition, we shall simply say that P has nerv
T, or nerve h(T), as the case may be, and suppress mentioning isotopy.

We can ask the same question for Riemannian surfaces of constant curvature, tha
is, to give a complete description of pairs (S, P') where S’ is a surface with a constan
curvature Riemannian metric and P’ is a circle packing on §', consisting of circles;
with respect to the Riemannian metric, and whose nerve is isotopic to T. Indeed, tlu
is the context addressed in most papers on circle packings. Here two packings Pf,w :
and P, on the same Riemannian surface S are equivalent if there exists a conforma{g._
automorphism of the surface (with respect to the Riemannian metric) isotopic to th
identity which takes Pj to P, and we are interested in the equivalence classes of circle 4
packings. Then the Koebe-Andreev-Thurston theorem [Koe36, And70, Thu80] says:
that given T, there is a unique such pair (S, P’) up to scalar multiple and isotopy of%ﬁg
the metric. In the case where g = 0, we assume the metric is scaled to have constant §
curvature 1 and where g > 2 we assume that the metric has been scaled to have con- %@
stant curvature —1. More precisely, when g = 0, there is a circle packing P on the o
unit sphere with nerve T, unique up to conformal automorphisms of the sphere (that 3‘”
is, up to the action of PGL,(C) on the Riemann sphere). In the case where g = 1, g¥]
there is a unique Euclidean torus up to scaling with a circle packing with nerve T and }
the packing is rigid up to translation. And when g > 2, there is a unique hyperbolic :
surface with a circle packing with nerve T and the packing is rigid. Observe that the *
solution (8, P') also provides a solution (S, P) to our original question in the category %
of projective Riemann surfaces. We shall call this solution the KAT pair associated
to 7. The main interest of our study is to see how much the KAT pair for T can be g {
deformed with a deformation of the projective structure. ;

Our first clue that there was a rich deformation theory arose from results of com-
puter experiments. Figures 1 and 2 show the developing images of two projective cir- #
cle packings on a genus 2 surface which have the same nerve T (up to isotopy). This is 5
an example where t has exactly one vertex. Figure 1 represents the KAT solution for
T, figure 2 a small deformation. In both cases the developing maps are injective, but "
there are also many examples where the developing map is not injective.
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Figure 1: Hyperbolic example Figure 2: Deformed example

4, Cross Ratios

Projective geometry is not a metric geometry and metric concepts such as radii do not
make sense in general. Hence we need to use some other invariants which would help
Lo quantify and parameterize the space of pairs (S, P) and allow us to analyze the space
more systematically. We introduce a projective invariant of a circle packing based on
the cross ratio. It can also be found in the works by He and Schramm [HS98] and
separately by Schramm [Sch97] as well in a different context.

Suppose that (S, P) is a pair of a projective Riemann surface S and a circle packing
P on § with the property (3.1). The invariant of (S, P) which we will define is a map

x:E. — R,

where E. is the set of edges of 1. To each edge e of T, we choose a lift £in T and
associate a configuration of four circles on C in the developed image about dev(?),
see Figure 3. Recall that the cross ratio of four distinct ordered points in C is given in
[AhIS3] by

(21 —z3)(z2—24)

(z1 —z4)(z2 —23)

It is the value of the image of z; under the projective transformation which takes
72,23 and z4 to 1,0 and oo respectively. The value assigned to the edge e will be the
imaginary part of the cross ratio of the four contact points (pi4, p23, P12, P13) of the
configuration chosen as in Figure 3 with orientation convention. Note that the cross
ratio of these four points is always purely imaginary with positive imaginary part since
the projective transformation taking the ordered triple (p23, p12, p13) to (1,0, 0) maps
C, to the imaginary axis, and hence takes p4 to a point on the positive imaginary axis
due to the nature of the configuration. Since the cross ratio is a projective invariant, the

(zl ,ZZ;Z3,Z4) =
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value does not depend on the choice of lift € and the developing map. Collecting th
values for each edge, we obtain the map x of E;, which we call a cross ratio paramete:
The cross ratio of the edge e determines the position of the circle C4 in Figure 3 once
the positions of Cy,C; and Cj are fixed, and if the cross ratio of e approaches oo, the
C4 approaches p3.

dev(?)
c, P13

<

G

G

Figure 3: Four circle configuration

the developing image of the surrounding circles closes up neatly. The key to obtaining; ,

vertices at oo, 0 and +/—1. This led us to introduce an associated matrix A € SLz(R)'

to each edge e € E;. If the value of a cross ratio parameter at e is x, A is defined to',_
0 1 _— . . i

be i € SL;(R). The relationship between the associated matrix and the!
-1 x

configuration of four circles corresponding to an edge with cross ratio x can then be

and C, is a circle tangent to C) at the point 1/x, and is also tangent to C;. Then a 3
simple computation shows that the associated matrix A represents a transformation
which sends the left triangular interstice of this configuration to the right triangular
interstice. -

Let v be a vertex of T with valence m., We read off the edges ey, - , e, incident to 3
v in a clockwise direction to obtain a sequence of assigned values x1,...,x,, of cross §
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ntio parameters, Let

a; b
W, =A1A2---A; = ;o “1,....m
! " ! ( ¢j d; /
. . 0 1 )
where A; is the matrix i associated to e;. Then, by a careful study of the
-1 x

normalized picture, and the composition of moves that shifts the standard interstice to
the interstices on its right step by step, until it finally returns to itsclf, it was verified
in [KMTOQ3a] that for each vertex v of T, we have

-1 0
W, =AAr--- Ay — s 4.1
142 ( 0 1 ) 4.1)

and
aj,c;<0,bj.d;>0for 1<;<m—1

4.2)
except for a; =dp—; =0.

The first condition comes from the fact that the chain of circles surrounding the circle
corresponding to v closes up. The second condition is a no overwinding condition,
and it eliminates the case where the chain surrounds the central circle more than once.
Notice here that the associated matrices are in SL;(R) and not in PSL,(R), so that the
incqualities of (4.2) do make sense.

On the other hand, given a real valued map x of Er satisfying (4.1) and (4.2) for
cach vertex of T, it is relatively routine to construct a pair (S, P) of a projective Rie-
mann surface S and a circle packing P on § so that its cross ratio parameter is X (sce
|[KMTO3a] for details). We thus set

Co = {x: Fr — R|x satisfies (4.1) and (4.2) for each vertex},

and call it the cross ratio parameter space.

Since the condition (4.1) gives a set of polynomial equations for the x;’s and (4.2)
are polynomial inequalities in the x;’s, (¢ is a semi-algebraic set by definition, and we
define the topology on (; to be the one induced by the tautological inclusion i : ¢ —
%= It turns out that this naive construction gives us a correct parameterization of the
moduli space of pairs (S, P) where S is a projective Riemann surface and P is a circle
packing on S with nerve T.

Lemma 4.1. We have the following :

(1) (I.emma 2.17 in [KMTO03al) (: corresponds bijectively to the moduli space of
all pairs (S.P) where S is a projective Riemann surface and P is a circle packing
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on S combinatorially with nerve T, up to marked projective equivalence.
(i) (Lemma 3.2 in [KMTO3b]) The tautological inclusion i : C; — R is proper. -

The above result states that we can identify (; with the moduli space of all pairs:
(S, P) with nerve T, which we do from now on. The study of the moduli space then-

reduces to the study of the semi-algebraic set ;. k
2
5. Conjectures b
b
J

Since the KAT pair represents a point in (x, the moduli space is certainly nonempty.
However, this is the only fact we know up to this stage, and we are far from knowmg,

what C; looks like. To understand C; better, we relate it with some other spaces andf
formulate a conjectural picture. w‘.
Let P, be the space of all projective Riemann surfaces homeomorphic to X; up to- i

marked projective equivalence. In other words, it is the space of all marked pro;ectlve
structures on Lg. To each pair (S,P) in (, assign only its first component and we i
obtain the forgetting map
f1G-——%. :

Thus the image f{C;) consists of all projective Riemann surfaces which admit a circle -
packing with nerve T and it is not difficult to see that the injectivity of f is equivalent
to the rigidity of the circle packings with nerve T on such projective Riemann surfaces.

Let g be the space of all complex structures on L, up to marked conformal equiv-
alence, which is commonly called the Teichmiiller space. To each projective Riemann
surface, assign its underlying complex structure and we obtain the projection map

WERILEE o ¥ S hsi

e
Pl
%
"3
3
*
4]
b

PP — T,

Teichmiiller space is known to be homeomorphic to the Euclidean space of dimension ”
2 or 6g — 6 according to whether g = 1 or g > 2. The projection map p is a vector %
bundle projection where the fiber over each conformal class consists of its holomor- s
phic quadratic differentials, and each fiber is a vector space of the same dimension as '%N

T,. In particular, ®, is homeomorphic to Euclidean space of dimension 4 or 12g — 12 %
according to whetherg=1o0rg > 2. f"j_é
>

To each conformal class of a Riemann surface homeomorphic to X, the Koebe- ¥
Riemann Uniformization Theorem states that there is a unique metric of constant cur-

vature 1,0 or —1 on the surface, up to scaling if g = 1, in the conformal class. Hence,
we obtain a natural section

5:T, — By
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to the projection map p: ‘f, »*J,. This section is none other than the space of marked
liuclidean structures on the torus up to scaling in the case where g = 1, and the space
of marked hyperbolic structures on X, in the case g > 2, which, we recall from §2, are
projective structures by definition,

The Koebe-Andreev-Thurston theorem implies that f((;) intersects s(Z;) only at
J({KAT}) and furthermore, the rigidity of the circle packing on f({KAT}) mcans
that the inverse image of this point under f consists of exactly onc point. It is natural
(o conjecture that the rigidity of the circle packings holds for all projective Riemann
surfaces in f( (), that is, each projective Riemann surface § admits at most one circle
packing with nerve T up to projective automorphisms of § isotopic to the identity. This
can be stated as follows:

Conjecture 1. The forgetting map f: Cc — Py is injective.

This does not however give a possible description of the space ;. To get a more
detailed understanding of ; and its image under f, we formulate a stronger conjec-
ture, which certainly implies the first one, as follows:

Conjecture 2. The composition po f : C; — Iy is a homeomorphism.

The motivation for this rather strong conjecture goes back to the second author’s
result in [Miz00], where it was shown to be true when g = 1 and 7 has only one vertex.
Here are some implications of the conjecture, which we belicve to be true, and have
verified in certain special cases. They serve as further motivation for the conjecture:

(i) The moduli space ( is homeomorphic to Euclidean space of dimension 2 or
6g — 6 according to whetherg=1or g > 2.

(i) f((C) and s(‘Ty) are middle dimensional proper submanifolds in &, which inter-
scct only at f({KAT}). Probably the intersection can be shown to be transverse
with a little more argument.

(iii) The image f((;) of the forgetting map defines a new natural section or a slice
wop:F - T,. In words, this would mean that for each conformal class of a
Riemann surface, there exists a unique projective structure within the conformal
class which admits a circle packing with nerve T.

6. Local Results

We have shown that part of the conjecture is true, at least topologically in a ncighbor-
hood of the KAT pair.

Theorem 6.1 (Theorem 1 in [KMTO3al). There is a neighborhood U of the KAT pair
in C; such that



(i) U is homeomorphic to Euclidean space of dimension 2 or 6g - 6 according to
whether g =10rg>2,

(ii) the restriction of f 10 U is injective.

This result was proved by comparing the deformation of a hyperbolic 3-manifold%_
constructed from the KAT pair and the deformation of a projective Riemann surface'@l
admitting a circle packing with nerve 1. Hyperbolic Dehn filling theory and quasis
Fuchsian deformation theory were used for the cases g == 1 and g > 2 respectively. E

Since the neighborhood of U is defined constructively, we roughly know how largeé
it is. When g =1, U is chosen so that the image of U under f is identified w1th?
hyperbolic Debn surgery space of a corresponding cusped 3-manifold, which can beq
embedded as a 2-dimensional subspace in P;. Since hyperbolic Dehn surgery spaJcé:j
omits only a finite number of classical Dehn surgery coefficients, U in this case would,i
be fairly large. When g > 2, U is chosen to be the prcimage of the space of all_d\
quasi-Fuchsian deformations of a corresponding hyperbolic 3-manifold by f. Since;
this space can be identified with the connected component of discrete representations"-.f
containing the one coming from the KAT pair, U in this case is also fairly large. §

7. Global Results

The work to prove the global results stated in Conjectures 1 and 2 is still in progress.
We discuss in this section some of the partial results we have obtained thus far in
|[KMT03a] and [KMTO3b]. To begin, it is useful to consider Thurston’s parameteriza-
tion of P, which we will describe shortly, since it is more geometric than the projection
map p : P, — ‘I,. We first describe two more spaces closely related with 2.

The first is the space of non-elementary representations of m; (X,) in PGL,(C)(=
PSL,(C)) up to conjugation, which has a natural structure of a (6g — 6)-dimensional
complex analytic manifold [Gun67]. Since the holonomy representation of a projec-
tive structure is not only non-elementary but lifts to SL;(C), we will focus on the open
subset X, consisting of representations which lift to SL,(C) up to conjugation. Then,
assigning its holonomy representation to each projective Riemann surface, we obtain
the map

hol : Py — Xg.

hol is known to be a local homeomorphism by Hejhal [Hej75].

The second is the space of isotopy classes of measured laminations on X (g > 2),
which we denote by M L. A measured lamination is defined to be a closed subset on
L, locally homeomorphic to a product of a totally disconnected subset of the interval
with an interval, together with a transverse measure. A simple closed curve on X,
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with the counting meusure [or transverse arcs is an elementary, but important and
fundamental example of a measured lamination, In fact, the set of weighted simple
closed curves is dense in M L,. See [Thu80, Thu88] for details.

Although a measured lamination is a topological concept, once we.put a hyperbolic
metric on Lg, its support is canonically realized as a disjoint union of simple geodesics
which forms a closed subset on the surface. Such a lamination is called a geodesic
lamination with transverse measure.

We now describe Thurston’s parameterization of #;. Thurston has shown that
any projective Riemann surface corresponds uniquely to a hyperbolic surface pleated
along a geodesic lamination with a fixed bending measure. Following [KT92], we
briefly review his parameterization. Start with a projective structure on S which is
not a hyperbolic structure. Consider the set of maximal disks in the universal cover
S. Each maximal disk is naturally endowed with the hyperbolic metric, the boundary
of each disk intersects the ideal boundary of S in two or more points and we can
take the convex hull of these ideal boundary points. It can be shown that this gives
a stratification of § by ideal polygons, and ideal bigons foliated by “parallel lines”
joining the two ideal vertices of the bigons. The polygonal parts support a canonical
hyperbolic metric. Collapsing each bigon foliated by parallel lines in S to a line and
taking the quotient of the result by the action of the fundamental group, we obtain a
hyperbolic surface H. This defines a hyperbolization map

T : Py — 5(Tg).

Also the stratification defines a geodesic lamination A on H by taking the union of col-
lapsed lines. Moreover, using the convex hull of the ideal points of the maximal disk
not in the disk but in the 3-dimensional hyperbolic space, we can assign a transverse
bending measure supported on A. This defines a pleating map

ﬁZTgeMLg.

The pair of these maps (7, ) becomes a homeomorphism of %, onto s(T;) X M L,.

Figure 5 shows the related spaces and the maps between them as discussed above.

Now by using Thurston’s parameterization of P, we can analyze f: & — % by
looking at To f and B o f separately. We have the following result:

Lemma 7.1 (Lemma 4.1 in [KMTO03b]). If ¢ > 2, then the composition Bo f : C; —
M Lg has bounded image.

This is proved by observing how the developed image of a projective Riemann
surface admitting a circle packing with nerve 7 is controlled by the combinatorial data
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Figure 5: Related Spaces

of T. The key is that there is a relation between the circle packing on dev(S) and the
maximal disks in dev(S) which can be exploited to control the image Bo f((;).

Apart from this general result, the best global results towards the conjecture wé
have obtained so far are for the case when 7T has only one vertex. This arose from ous
attempt to understand the cross ratio parameter space C; concretely in the s1mp1est:,
settings. Note that in this case, C; is defined by just one matrix equation and set oﬁ

inequalities corresponding to (4.1) and (4.2) respectively. i

Theorem 7.2. [f T has one vertex and g > 2, then i

(i) (Theorem 2 and Lemma 5.1 in [KMTO03a)) C; is homeomorphic to R%~° and.
holo f: G — X, is injective. In particular, f : G — By is injective. :

(i)) (Theorem 1.1in [KMTO3b]) po f: C; — I, is proper.

Theorem 7.2 comes fairly close to proving Conjecture 2 for the one circle packing .
case. What is missing is a proof that p restricted to f((;) is locally injective. An
argument similar to the onc worked out by Scannell and Wolf in [SW02] is expected
to complete this case. i

The arguments used to prove Theorem 7.2 depend technically on the simplifying i
assumption that T has only one vertex. At the moment, we do not know how to gener- ,
alize these arguments to prove the conjecture in general. In fact, the proof of Theorem :
7.2 (i) given in [KMTO03a] involves a careful study of the cross ratio parameter space,
showing that one can always choose a set of 6g — 6 free parameters lying in a convex ‘
subset of R%~6 which completcly parameterizes C;. This requires a very good under-
standing of the cquations (4.1) and inequalities (4.2). Further analysis then shows that J
in fact hol o f is injective, from which we conclude that f : G — %, is injective.

The proof of Theorem 7.2 (ii) uses Theorem 7.2 (i), but otherwise does not rely .
on the assumption that T has only one vertex. The main ingredient is the result of
Tanigawa in [Tan97] which relates quantities associated to po f, o f, and o f. We
give a brief sketch of the proof. First note that the fact that hol o f is injective, stated in *
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‘Theorem 7.2 (i), immediately implies that wo f is proper. Now choose a sequence x, in
( which escapes every compact subset. Since To f is proper, the hyperbolic surfaces
H, = mo f(x,) escape every compact subset of T,. Let h, : X, — H, be the harmonic
map, where X, is the Riemann surface po f(x,). Then Tanigawa’s inequalities [Tan97]
imply that either the extremal lengths E)_(X,) of A, = Bo f(x,) in X,, diverge, or that
the energies of the maps %, remain bounded. In the first case, since by Lemma 7.1 A,
is bounded in M Ly, it must be that X, escapes every compact subset. In the second
case, the result of Wolf in [Wol89] implies that X, is again unbounded. This concludes
the proof that o f, and hence p o f are proper.

8. Cone Projective Structures

This section is just to give a small remark not mentioned in [KMTO03a, KMTO03b]. It
is natural to study the cxtension of circle packings on projective Riemann surfaces to
cone projective Riemann surfaces, where the cone points are in the vertex set of T, as
was done in the metric structure case. This would include circle packings on orbifold
surfaces and branched surfaces, and can also be used to connect a circle packing on a
compact surface and a horocycle packing on a cusped surface continuously.

The analysis using the cross ratio parameter can be applied to the study of circle
packings on projective Riemann surfaces with cone singularities, with little modifi-
cation. In the case of cone structures, the equation (4.1) is replaced by an equation
involving the trace, arising from the cone angle condition assuming the cone points
are “centers” of circles. However, it can be much more complicated if we allow cone
angles > 21. To demonstrate the complications, we describe here the moduli space of
circle packings by one circle on the torus with a cone point where the cone point is the
center of the circle.

Let 8 (> 0) be a cone angle and T the nerve of a circle packing. We here regard
a cone point with © =0 as a cusp. Let us denote the cross ratios corresponding to
the three edges of T by x, y, z and their associated matrices by X, Y, Z. Then the con-
dition corresponding to (4.1) in this case is replaced by the condition that (XY Z)? is
conjugate to a O-rotation when 6 > 0 and a translation when 8 = 0. This implies the
equation,
|tr(XYZ)| = |2cos(08/4)],

by which we can compute the cross ratio parameter space ;¢ concretely as follows.
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( {xyz—x—y—z=2,xy>1, x>0} if6=0.
{xyz—x—y—z=2cos$, xy>1, x>0} if6e(0,4m).
) {1, if 6 = 4.
Cro= {xyZ*x-y—z=2cos%,xy<l} if 6 € (4w, 8m).
{(-1,-1,-1)} if 6 = 8.
[ {oz-x-y-z=2cos?, xy>1,x<0} if6e (8, 12m).

When 6 = 0, 47 and 8, the trace condition is not sufficient to determine the conjus
gacy class of XYZ, and we need a little argument to obtain the above representations.’

The equation xyz —x —y —z = ¢ has the unique solution z for given x, y, 7 unless
=1, and (¢ is homeomorphic to R? except for @ = 4w, 87. Note that it degcneratesa
to a point in these two exceptional cases. i

9. Problems

Here we list up some open problems and directions for further study in the subject.

(1) Can we use a variational method to study the conjecture, similar to the methods,
used by Colin de Verdiere in [CdV91] ?

(i) If the conjecture were true, the resulting new section in %, should find some
applications in the study of Kleinian group theory. What are they ?

(iii) In the one circle packing case, the moduli space C; can be identified with a very
nice convex subset of R%~5. This is as opposed to many other embeddings of T,
which have fractal type boundary. Do C; or f((;) have nice compactifications
with interesting geometric interpretations?

(iv) Brooks [Bro86] has shown that the set of hyperbolic surfaces admitting a circle
packing with the property (3.1) is dense in Teichmiiller space Z;. A natural
question is whether projective Riemann surfaces admitting a circle packing with
the property (3.1) are dense in P, ?

(v) Study the intersection of f((;) with the space of quasi-Fuchsian structures for
fixed g and 1. For example, we may ask whether this intersection is connected,
and what is the boundary of this space like ?

(vi) Study the geometry of &, from f((;) for various 7.

(vii) The cross ratios are naturally positive real numbers, but it is possible to make
sense of negative cross ratios if we allow overlapping (overwinding). Is it pos-
sible to make geometric sense of the cross ratio as a complex number ?
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(viii) Study the space ol “triangulations” of ¥,, which lift to honest triangulations

of ¥,. In particular, it would be interesting to generate a complex from the

triangulations, similar to the complex of curves studied by Harvey in [Har92].
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Grafting and components of quasi-fuchsian projective
structures

Kentaro Ito

Abstract

We give an expository account of our results in [Ito00] and [Itoa] on the bump-
ing and self-bumping of components of quasi-fuchsian projective structures from
the view point of [Itob] on continuity of grafting maps at boundary groups.

1. Introduction

We consider the space of projective structures P(S) on a closed surface S of hyperbolic
type and its open subset Q{S) consists of projective structures with quasi-fuchsian
holonomy. It is known that Q(S) have infinitely many connected components. The aim
of this note is to outline and explain how components of Q(S) lies in P(S), especially
how these components bump or self-bump. Here we say that components Q, Q’ of
O(S) bump if they have intersecting closures and that a component Q, self-bumps if
there is a point £ € dQ such that U N Q is disconnected for any sufficiently small
neighborhood U of X. Studying how Q(S) lies in P(S) is closely related to studying
how the quasi-fuchsian space QF = Q¥ (S) lies in the representation space R(S),
where R(S) is the set of conjugacy classes of representations p : 7;(S) — PSL,(C)
with the algebraic topology and QF C R(S) is the subspace of faithful representations
with quasi-fuchsian images.

Now let I be a geometrically finite Kleinian group with non-trivial space AH(T")
of conjugacy classes of discrete faithful representations I' — PSL;(C). Then the
bumping of components of the interior of AH (T") are characterized by the topological
data of the quotient manifold H3 /T by Anderson, Canary and McCullough [AC96],
[ACMOO0]. In our setting, it is known that the quasi-fuchsian space Q¥ is the interior
of the space AH(S) of discrete faithful representations and that Q¥ consists of exactly
one connected component. Nevertheless, McMullen [McM98] showed that Q¥ self-
bumps by using projective structures and ideas of Anderson and Canary [AC96]. In
his argument, he used the fact that the local structure of the boundary of Q¥ is equal
to that of Q(S) = hol ™! (Q¥ ) becausc the holonomy map hol : P(S) — R(S), assign-
ing a projective structure to its holonomy representation, is a local homeomorphism
(see [Hej75]). After that, Bromberg and Holt [BHO1] showed that each component
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of the interior of AH(T") self-bumps for more general Kleinian groups I” without us- -
ing projective structures. We refer the reader to a survey written by Canary [Can04] *

for further information on the bumping and self-bumping of deformation spaces of :
Kleinian groups. i

In this note, we push ahead with the observation in [McM98] and studied the "'.
bumping and self-bumping of components of Q(S) = hol™!(Q¥). By Goldman’s 3
grafting theorem (Theorem C in [Gol87)), the set of components of Q(S) is in one-to-
one correspondence with the set MLy of integral measured laminations on S. Thus we
obtain a decomposition | [eaq., Q. of Q(S), where Q, is the connected component ;, :
of O(S) associated to A € MLy. Especially, the component @ for zero- lammatlon
0 € M Ly consists of all quasi-fuchsian projective structures with injective developing’ f
map. We know that the map hol|g, : Q) — Q¥ is b1holomorph1c for each A € MLy 5 f
and let ¥) : QF — @, denote the univalent local branch of hol™!, which is called the
grafting map for A. In §3, we discuss conditions under which the map ¥, is extcnded P
continuously to a boundary point of Q¥ . Recall that Bers’ simultaneous uniformiza- .
tion gives a bijection B : T(S) x T(S) — QF, where T(S) denote the Telchmuller
space of S. Suppose that a sequence p, = B(X,,¥,) € QF converges to P € 0Q¥F. !
Then we say that the convergence p, -— Pe is standard if there exists a compact sub- .
set K of T(S) which contains all X;, or all ¥,; otherwise it is exotic. Then we have the
following:

O PO -“.l-‘-':ldhﬂ‘ i 5

R

Theorem 1.1 ([Itob]). For every A € M Ly, the grafting map P, : Q,’}' — P(S ) takes
every standardly convergent sequence to a convergent sequence in P(S), where P(S) =
P(S) U {co} denote the one-point compactification of P(S).

On the other hand, in §4, we outline the following result, which is obtained by
making use of exotically convergent sequences constructed by Anderson and Canary
[AC96] and McMullen [McM98]:

Theorem 1.2 ([Ito00, Itoa]).

i i it o CSRN L Be I F e

(i) Any two components of Q(S) bump,
(ii) Every component of Q(S) except for Q self-bumps, and

(iii) For any n € N, there exist n-components of Q(S) which bump simultaneously.

The same argument as in Theorem 1.2 reveals that the grafting map W), : QF —
P(S) does not extend continuously to dQ¥; see Theorem 5.1. Then Theorem 1.1
implies that only exotically convergent sequences cause this non-continuity and the
bumping of distinct components of Q(S).
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2. Preliminaries

2.1. Quasi-fuchsian space

We let R(S) denote the space of conjugacy classes [p] of representations p : 7 (S) —
PSLy(C) with non-abelian image p(m(S)). (For simplicity, we denote [p] by p if
there is no confusion.) The space R(S) is cndowed with the algebraic topology and
is known to be a complex manifold (see for example [MT98)). Quasi-fuchsian space
QF is the subset of R(S) of conjugacy classes of faithful representations whose im-
ages are quasi-fuchsian groups. Then Q¥ is open, connected and contractible in R(S).
Let p € QF with quasi-fuchsian image I' = p(m; (S)). Then the region of discontinuity
Qr of T decomposes into two invariant components Qll' and Qr, and the representa-
tion p determines a pair (Q /", Qp /T) in 7'(S) x T(S). Here T(S) is the Teichmiiller
space of S, and § denotes S with orientation reversed. On the contrary, it was shown
by Bers [Ber60] that each pair (X,¥) € T'(S) x T(S) has its unique simultaneous uni-
formization p = B(X,¥) € Q¥ . Thus we have a parameterization

BZT(S)XT(S)—) QF

of QF. We definc vertical and horizontal Bers slices in QF by Bx = {B(X Y):
Y € T(5)} and By = {B(X,Y) : X € T(S)}. Bers showed that both Bx and By are
precompact in R(S), whose frontiers are denoted by 0By and 0Bj.

2.2. Space of projective structures

A projective structure on § is a (G, X)-structure, wherc X is a Riemann sphere C and
G = PSL;(C) is the group of projective automorphisms of C. We let P(S) denote the
space of marked projective structures on S. A projective structure X. € P(S) determines
its underlying conformal structure T(X) € 7(S). It is known that P(S) is a holomorphic
affine bundle over T (S) with the projection ©: P(S) — 7'(S) and that each fiber n1(X)
for X € T(S) can be identified with the space of holomorphic quadratic differentials
on X. As an usual (G, X)-structure, a projective structure = € P(S) determines a pair
(fx,px) of a developing map f3 : § — C and a holonomy representation p : T; (S) —
PSL;(C), which is uniquely determined up to PSL,(C). We now define the holonomy
map

hol : P(S) — R(S)

by £ — [ps]. Hejhal [Hej75] showed that the map hol is a local homeomorphism and
Earle [Ear81] and Hubbard [Hub81] independently showed that the map is holomor-
phic.



In this note, we are mainly concerned with the subset Q(8) ~hol '(Q¥) of P(S). .
An element of Q(S) is said to be standard if its developing map is injective; otherwise
it is exotic. We denote by Q C Q(S) the subset of standard projective structures. For -
a quasi-fuchsian representation p = B(X,¥) with ' = p(7;(S)), the quotient surface
=0 / I is regarded as a standard projective structure on $ with bijective developing ‘,

map fr: )N Qi , with holonomy representation pg = p, and with underlying complex
structure X € T(S). Let

Y9:QF - Q&

TgRergsar ST a

be the map defined by the correspondence p — Qft /T as above. Then the map Wp
turns out to be a univalent local branch of hol~! onto the connected component Q of -
Q(S), which is called the standard component. Tt is known by Bers that every Bers "

slice By C Q¥ is embedded by the map ¥y into a bounded domain ¥y(By) of the
fiber t~ 1 (X) C P(S).

PR
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2.3. Grafting

cams

PRI

We let MLy = MLy (S) denote the set of integral measured laminations, or the set
of formal summation Y!_ k;c; of homotopically distinct simple closed curves c; on S
with positive integer k; weights. A realization Aof A= Y!_ kic; € MLy is a disjoint
union of simple closed curves which realize each weighted simple closed curve k;c; by
k; parallel disjoint simple closed curves homotopic to ¢;. For two element A, u € MLy,
the geometric intersection number is denoted by (A, u).

s

Let A be non-zero element of M Ly. We now explain haw to obtain the grafting
map

Gr,: Q@ — P(S),

ARSI ES LIRS SR S T Ca + L

which satisfies hol o Gry = hol on . In this note, we shall give two equivalent defin-
itions of grafting operation, the one given here is as usual, and the one given in §3.1is ;
duc to Bromberg [Bro02]. We assume that A is a simple closed curve ¢ of weight one
for simplicity and fix our notation as follows:

SR

Notation 2.1. Let p € QF with I' = p(x;(S)). Then we have projective structures
L ==Qf /T = W¥y(p) on Sand L~ = Q /T on S. Suppose that c* C L and ¢~ C X~
are simple closed curves associated to ¢ C S and that y € I 22 ) (S) is a representative

of the homotopy class of c. Let ¢* C Qff and &~ C Qf be the (y)-invariant lifts of
¢t C X and ¢~ C X7, respectively.

e st

Definition 2.2 (Grafting I). We adopt Notation 2.1. Let A, be a cylinder (C — &*) /(y)
equipped with a projective structure induced from that of C. Then the grafting Gr.(X)

Mk * alowans o« = o e



is obtained by cutling X along ¢ and inserting A, at the cut locus without twisting,

For general A € MLy, the grafting ¥’ = Gr) (X) of L along A is also defined by
linearity. Then it is important to note that pyx = py is always satisfied and that the
pull-back Ay := f5,'(Ar)/mi(X') C X' of the limit set Ar of the holonomy image
[=ps(ri(S)) = psr (=1 (S)) is a realization of 24 (see [Gol87]). Since hol o Gry, = hol
is satisfied on @, the grafting map Gr), takes ( biholomorphically onto the connected
component @ := Gry( Q) of Q(S). Thus we have a univalent local branch

W), :=Gno¥:QF - Q

of hol ~!. By abuse of terminology, we also call ¥, (p) the grafting of p along A and
W, the grafting map for A. By Goldman’s grafting theorem [Gol87] below, we obtain
the decomposition | |yeq7,y Q. of Q(S) into its connected components.

Theorem 2.3 (Goldman [Gol87]). For every p € QF, we have

hol™!(p) = {¥y(p) : L € MLy}.

2.4. Sequences of quasi-fuchsian representations

Now we introduce the notion of standard and exotic convergence for a sequence p,
Q¥ tending to a limit p. € dQF .

Definition 2.4 (Standard and exotic convergence). Suppose that a sequence p, =:
B(Xy,¥n) € QF converges to pe. € dQF . Then the convergence p, — P is said to be
standard if (i) there exist compact set K C T'(S) such that {X,} C K, or (ii) there exist
compact sct K C T(S) such that {¥,} C K. Otherwise, we say that the convergence is
exotic.

We let 07 Q¥ and 9~ QF denote the subsets of dQF of standard convergent limits
of type (i) and (ii) respectively, and set 0¥ QF = 3T QF Lo~ QF. Anelement p €
dQ¥F is called a b-group if the image I’ = p(m;(S)) is a b-group, i.e., there exists
exactly onc simply connected invariant component of Qr. Then we remark that the
set 37 QF is equals to the set of all b-groups in dQF and that the following hold (see
[Itob]):

a"QF = || 9Bx, 9°QF = || 9By.
XeT(5) Yer(§)
As we will explain in §2.5, there cxists a sequence in Q¥ which converges exotically

into T QF. On the other hand, the set 3QF — 3+ Q¥ is not empty, for instance, it
contains a limit of a sequence which appears in Thurston’s double limit theorem.
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As a consequence of the following lemma, we see that the map hol{@- Q-
QF U3t QF is bijective, where @ is the closure of @, in P(S).

Lemma 2.5. The map Wy : QF — @ takes every standardly convergent sequence
Pn € QF with limp, € 0T QF to a convergent sequence ¥, € Q with limX, € Q.

AN ST S s S

i

Proof. Suppose that a sequence p, = B(X,,¥,) € QF converges standardly to some ’f
P € 0T QF. Then we first show that X, — X and that p.. € dBx for some X € * b
T(S). In fact, there exists a subsequence of {X,}, denoted by the same symbol, which }
converges to some X € T(S). Now we take a new sequence p, = B(X,¥,) in Bx. Then f
the sequence {p,} also converges to P, since maximal dilatations of quasiconformal § %
automorphisms of C conjugating p, to p/, tend to 1 as n — oo. This implies that pe. €
dBx. Since 0By, N9Bx, = 0 if X; # X2, X, — X without passing to a subscquence
Therefore, any accumulation point L., € 0Q of the precompact set {X, € & ‘I(X,,) :
n € N} is contained in 7' (X). From the injectivity of the map hol|;-: x) (x)—
R(S) (sce [Kra71]), we see that L, is uniquely determined by the condition hol(Z..)
Pw, and thus X, — L. without passing to a subscquence.

oo
i v B e T N e S AR m&n&?ﬁ"&ﬂ%ﬁf

We collect in Table 1 below the equivalent conditions with standard/cxotic conver-
gence of quasi-fuchsian representations, as a consequence of Lemma 2.5 and [1to00,
Proposition 3.4] (see also [McM98, Appendix A]). The situation in which we consider
is as follows: suppose that a sequence p, € QJ converges to p. € 9~ Q¥ and that
the sequence T, = p, (7 (S)) converges geometrically to a Kleinian group I, which
contains the algebraic limit T = Pao(71(S)). Let L be the unique projective structure
in d@Qy with holonomy p.. and let @ : U — P(S), p. — Ee be a univalent local branch
of hol ! which is defined on a neighborhood U of p... Then the sequence I, = ®(p,)
converges t0 Lo, = ®(p..). We denote by Qf the unique invariant component of the
region of discontinuity Q- of ', which is equals to the image of the injective devel-

oping map fr : %.. — C. In this situation, all conditions in the same line in Table 1
arc equivalent.

et . tan Tt i

Table 9: Equivalent conditions with standard/exotic convergence.

Pr — Pe : Standard Prn — P : EXOtiC
Qf nA@) =0 O NA@) #0
X, are standard (n > 0) Y, are exotic (n>> 0)
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2.5. ACM-sequences

We will explain a typical example of a sequence p, € QF converging exotically to
P € 9T QF, which we call an ACM-sequence named after Anderson-Canary [AC96])
and McMullen [McM98}. We remark that all the known such a sequence is basically
obtained by their technique. We give here a brief survey and refer to [McM98] or
{1to00] for more details. Let ¢ be a simple closed curve on S and let T = T, be the
Dehn twist along c. Then an ACM-sequence in QF for ¢ with a starting point (X,¥) €
T(S) x T(S) is defined by

pn =B(T"X,7"'Y) (n€Z),

which is known to converge to some p.. € 07 QF. For example, the convergence
can be observed as follows: let us consider sequences M, = B(X,t"Y) in By and
N, = B(t™"X,Y) in By. Then p, =N, 07T, " and 1}, =M, o7 hold for all n, where T,
is the group automorphism of 7;(S) induced by . Since both sequences 1, and 1),
converge up to subsequence, the same argument in [KT90] (see also [Bro97]) reveals
that the sequence p, also converges up to subsequence. Moreover, we know that the
sequences T, 1}, and p, converge without passing to a subsequence from the Dehn
filling construction; see [AC96] and [McM98]. Similarly, we obtain a convergent
sequence

Pn =BT X, 7M7) =0t (neZ)

for each k € Z, which converges standardly to its limit if and only if £k = 0,—1 and
whose limitis in 9t Q¥ if £ > 0andin 0~ QF ifk < 1.

We now define an ACM-sequence for general element A = Y'!_ kic; € MLy,
whose support is denoted by A = Ll;c;. The Dehn twist for A is defined by t; =

t’c‘} o---or’c‘j, and thus T, 0Ty, == i la. o'cfff“. Then an ACM-sequence for A is
defined by
Pn =B(TXX7(TLOT7\.)"Y) (”EZ)a (2.1

which converges exotically to some p. € 97 QF. (An ACM-scquence converging
10 some P € 3~ QF is also obtained by the same way, but we do not discuss such a
sequence in this note.) We now recall some basic fact of the ACM-sequence {p,} asin
(2,1): by passing to a subsequence if necessary, we may assume that the sequence I'y =
pn(®1(S)) of quasi-fuchsian groups converges geometrically to a Kleinian group T,
whose Kleinian manifold Nz is homeomorphic to § x [—1.1] —{J;(¢; x {0}) and have
conformal boundary X LIY up to marking. Then the algebraic limit T = poo(71(S))
is a proper subgroup of T which carried by an immersed surface ¢(S) C Nz. Here the
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immersion @: S — Nj up to homotopy is obtained from the identity map § — S x {1}
by adding annulus which wraps around ¢; x {0} for k;-times for every i (see Figure 1).
Then one can sec that ' is a b-group and that p.. € 0~ QF . On the contrary, an ACM-
sequence as in (2.1) is obtained from a Klieinian manifold N and an immersion ¢ :
S — Ny as above by simultaneous (1, n)-Dehn filling at every rank-two cusps of Np.

7 =sx{1}
Cix {0} €j % {0}

Nf c Sx[-1,1]
o(S)

X=Sx{1}

Figure 1: An immersion @ : S — Ny

Note that the bottom and top conformal structures of the ACM-sequence p, =
B(t"X,12"¥) converge to the same projective lamination [c] € PM £(S) in the Thurston
compactifications of T(S) and T($) but in different speeds. On the other hand, we re-
mark that a sequence p, = B(t"X,T'¥) diverges and its top and bottom structures
converge to [c] € PM L in the same speed. Moreover, Ohshika [Ohs98] showed that
any sequence P, = B(X,,Y,) diverge if the sequences X, and ¥, converge to maximal
and connected projective laminations [y, [V] € PM L(S) with the same support.

2.6. Pull-backs of limit sets

Suppose that a sequence X, € Q(S) of quasi-fuchsian projective structures converges
to X € E(S_) Here we explain our fundamental idea on how to know what component
of Q(S) contains X,. Note that the sequence py, € QF of their holonomy converges
to pr.. € QF and set [, = pg, (11 (S)) and T = px.. (11(S)). In addition, we assume -
that I, converges geometrically to a Kleinian group T, which contains the algebraic
limit I'w. Since the sequence Ar, converges to Ag in the sense of Hausdorff ([KT90]),
one see that the sequence Az, C X, of pull-backs also converges to K);w CZ.inthe
sense of Hausdorff, where Az, = fy YAr,)/mi(Z,) and As, = fi! (Ap)/m1(Zw) (see
Lemma 3.3 in [1to00]). Here the sets Ay, C X, and K);,, C X are compared via K,-
quasi-isometry maps g, : X — X, between hyperbolic surfaces Z.. and X, such that
K, — 1 as n — co. Now recall that X, is in (}, if and only if Ay, is a realization of
2A, on X,. Therefore, the shape of sz in L. give us information on the shape of
Ay, C X, and hence on the lamination A, € M Ly such that X, € Q..
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3. Standardly convergent sequence in QF

In this section, we survey our results in [Itob], one of which states that the grafting
map ¥, : QF — P(S) takes every standardly convergent sequence to a convergent
scquence.

3.1. Grafting for boundary groups

Let P(S) denotes the one-point compactification P(S) U {eo} of P(S). We will extend
the grafting map ¥y : QF — @, to ¥y, : QF LId* QF — P(S). To this end, we first re-
call another (but cquivalent) definition of the grafting operation which was introduced
by Bromberg {Bro02] so that it also makes sense for elements of 3 QF .

Definition 3.1 (Grafting II). We adopt Notation 2.1. Here we further assume that ¢
separates S into two surfaces Sy and S, with boundaries. (The non-separating casc
is described precisely in [Bro02].) Accordingly, X and £~ decompose into £ —¢* =
Y1 UX; and X7 — ¢~ = X[ UL, , respectively. Let i denotes either 1 or 2 and let
A; C Qr be the connected component of the inverse image of X, C £~ whose closure
A; contains é~. Then the stabilizer subgroup I'; = Stabr(A;) of I = 7 (S) is identified
with 71 (S;). Since T; is a purely loxodromic free group with non-empty region of
discontinuity, Maskit’s result [Mas67] implies that I'; is a Schottky group. Note that
the conformal boundary Qr,/I'; of Mr, = 3 /T; with natural projective structure is
containing both projective surfaces X; and X7. Then the grafting Gr.(Z) is obtained
from projective surfaces Qr, /T’y —Z; and Qr, /T, — I, by gluing their boundaries
without twisting (see Figure 2).

Gr.(3)

Figure 2: The grafting Gr.(X) of £ along c.

Observe that Definition 2.2 works well even for p € 0T Q¥ whenever ¥ is lox-
odromic, because there still exists a (y)-invariant simple arc & in non-degenerate
component Q, for which (C€-é') /{y) is still an annulus. On the other hand, De-
finition 3.1 works well for p € 9 QF whenever every connected component of the
parabolic locus para(p) of p intersects ¢ essentially. In fact, in this case, I'; and I'



in Definition 3.1 are still Schottky groups, ¥ is still loxodromic, and there still ex-
ists a (y)-invariant simple arc ¢~ in the non-degenerate component Q. For general
A € MLy, we also obtain the grafting ¥, (p) € P(S) of p along A if the pair (A,p) is -
admissible, or satisfies the following condition: ;

¢ p € d* Q¥ and para(p) and A have no parallel component in common, or

* p €3~ Q¥ and every component of para(p) intersects A essentially.

Otherwise, we set ¥y (p) = oo € P(S).

3.2. Continuity of grafting maps

One may expect that the extended grafting map W, : QF Ud*Q¥F — P(S) is also

continuous at 9= QF, but this is not the case for every A € MLy; see Theorem 5.1. 2

On the contrary, we have the foilowing theorem, which implies that only exotically £
convergent sequences cause the non-continuity of the extended grafting maps.

Theorem 3.2 ([Itob]). Let p, € QF be a sequence converging standardly to p.. €

tQF. Then the sequence W, (p,) also converges to Wy (pe) in P(S) for every A €

MLy.

Here and throughout, we let @, denote the closure of the component @ of Q(S) in
P(S), not in P(S), and set dQ, = @, - Q.. Then the above theorem tells us that ¥ (p)

is surely contained in 9Q, if the pair of A € MLy and p € 3+ Q¥ is admissible. Recall ,
that, as we observed in §2.4, a sequence ¥, € Q) converges to L. € d@ if and only if ;

Pz, € QF converges standardly to px,, € 0 QF . Thus we obtain the following:

Corollary 3.3. The grafting map Gry, : @ — Q, extends continuously to Gry, : Qy —»
P(S) for every h € MLy. !

It is important to remark that we do not know whether @, is self-bumping at 9Q
or not, and thus we have to avoid this point. The following theorem plays an important
roll in the proof of Theorem 3.2:

Theorem 3.4, For a given B(X,Y) € QF, set B = Bx UBy. Suppose that {A,} is a
sequence of distinct elements of MLy. Then the sequence {mo¥; (B)} eventually
escapes any compact subset K of T (S); that is, toW), (B)NK =0 for all large enough
n.

We now outline the proof of Theorem 3.2. We only consider the casec where the
pair (A, Pw) is admissible and set Lo = ¥ (Peo) € P(S). Let @ : U — P(S), Poo — Leo

e~
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be a univalent local branch of hol ' defined on a neighborhood U of p... Then the
sequence X, = ®(p,) converges to Lo.. If £, € Q, for all large enough #n, then £, =
W, (pPn). and then we obtain the desired convergence X, = W3 (Pr) — Lo = ¥y (Peo)-
We show that £, € @, by using the idea in §2.6; that is, we show that the pull backs
Az, C %, of the limit sets Ar, are realizations of 2A. We assume that the sequence
T, == pa(T1(S)) converges geometrically to a Kleinian group T, which contains the
algebraic limit Fe = Poo(®1 (S)). Then Ax, C I, converges to the pull-back As. C Ze
of Ag. Although it is difficult to understand the shape of Kz“, we know a rough
sketch of the subset Az, C sz in relation to A from the definition of the grafting
Yoo 2= Wy (o). Moreover, we can see that each connected component of As_ contains
that of Ax_ by using [ACCS96, Lemma 2.4]. By combining the above observations,
we see that Ay, are realizations of 2\ in X, for all large enough n. At this stage, we
make use of Theorem 3.4 essentially, which asserts that the sequence X, is contained
in a finite union of components of Q(S).

As a consequence of Theorems 3.2 and 3.4, Goldman’s grafting theorem for quasi-
fuchsian groups (Theorem 2.3) extends to all boundary b-groups, which is conjectured
by Bromberg in [Bro02].

Theorem 3.5 ([Itob]). For p € 0*Q¥F, we have

hol ™' (p) = {%.(p) |1 € MLx, % (p) # =}

4. Exotically convergent sequence in Q7

In this section, we shall show that ACM-sequences cause the bumping and self-
bumping of components of Q(S). Throughout this section, Figures 3 and 4 should
be helpful for the reader to understand the arguments.

4.1. Exotic components bump to the standard one

We first show the following:

Theorem 4.1 ([Ito00]). For any non-zero . € MLy, we have QN Q, # 0.

Let {pn} C QF be the ACM-sequeice Tor A as in (2.1), which converges exot-
ically to some pw € 9% QF = hol(d(})). Let L., be the unique point in 9@ with
hol(Ze) = poo and let @ : U —» P(S), p...+ » E.. be a univalent local branch of hol” !
defined on a neighborhood U of p... Then (he sequence £, = ®(p,) converges to
Yo = ®(Ps). Since the convergence P, - » P.. is cxolic, we see from Table [ that
¥, arc exotic for all |n] >> 0 (see also Theorem A.2 in [McMY8|). Morcover. we sce
that £, € @, for all |r| >> 0 by using the idea in §2.6. In (act, one can observe (hat
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Figure 3: Sequences {Z, }ncz and {Z} }ncz.

sz C X is a “decorated realization” of 2\, that is, sz contains a realization of 2A
and is contained in a regular neighborhood of a realization of 2A (see the lefi side of
Figure 4). Since Az, C I, converge to sz C X, the sets Az, turn out to be realiza-
tions of 2\ and thus X, € @ for all |n| > 0. This implies that @y N'Q, # 0. We also
remark that X, = ¥ (p,) hold for all || > 0.

4.2. Simuiltaneous bumping

We extend Theorem 4.1 to the following:
Theorem 4.2 ([1to00]). Lez {X;}72, be a finite subset of M Ly — {0} such that i(A;,Aj) =
0 for every 1 <i < j <m. Then we have —@ﬁb;‘ﬂ---ﬂ—@—mgé 0.

In fact, we can construct ACM-sequences

Py = B(t, X;, (1, 0m,)" Ty)

for A; for each 1 < i < m so that all of these sequences pﬁ,i) (i=1,...,m) have the
same algebraic limit px € dTQF; see §5 in [1to00]. Let @ : U — P(S) be a univalent
local branch of hol™! such that ®(pw) € 9Qp as in §4.1. Then for each i, we have
a convergent sequence d)(p,, } — ®(pw), which turns out to be <I>(pn ) € @, forall
|n] > 0 by the same argument as in §4.1. Thus we have QN ( e QL‘.) # 0.

4.3. Self-bumping of exotic components

Here we outline the proof of the following:

Theorem 4.3 ({Itoa]). For any non-zero A € MLy, @, self-bumps.
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Az, Z.=Gmu(Z..)

e o
= )

)
AZ, ~ 2h %, AZ, ~ 20w] z,

Figure 4: Schematic figure explaining the proof of Theorems 4.1 and 4.2.

Let {pn} be the ACM-sequence for A as in (2.1). Then we actually show that
the subsequences {Pn}ns0, {Pn}nco Of {Pn} are contained in distinct components
of UN Q¥ for any sufficiently small neighborhood U of p.. This is a consequence
of the following fact: in the same notation as in §2.6, both sequences {Ar, }n:0,
{Ar, }n<o converges to Ag in the sense of Hausdorff but Ar,, (n > 0) and Ar,, (n < 0)
are spiraling in opposite directions at each fixed point of rank-two parabolic subgroups
of I.

Before outlining the proof, we recall the definition of operations (-,-)y, (+,") :
MLy X MLy > MLy, which is closely observed in [Luo01]. For any two elements
A, u € MLy, new elements (A, )y and (A, u), in M Ly are obtained by taking realiza-
tions /71, 1 of A, u so that the geometric intersection number of A and H is minimal, and
drawing “zigzag” paths on ’XU;’I under the rules in Figure S (see also Figure 6). Now
let A, u € M Ly. We collect here some of basic properties of these operations:

4] (x,ﬂ)ﬂ = (:u7 7\')b

(i) (A p)y # (A,p)y if and only if i(A, ) # 0. If i(A,u) = O then (A, )y = (A, )y =
A+p

(iii) Assume that every components of yintersects A. Then ((A, 1)y, 1), = (A, )y, 104 =
A (s o)y = (A, 2p)y and ((Ry )y, 2)p = (A, 202)p.-
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Therefore, if v:e further assume that i(A, 1) # 0, the sequences {Z}, }n0, {Z) }no
are contained in distinct components of Q(S). This implies that {ps }ns0. {Pn fn<o
are contained in distinct components of U N Q/F, and hence that the sequences {X, =
D®(Pn) b0, {En = P(Pn) tno, Obtained in §4.1, are contained in distinct components
of ®(U)N Q. Therefore @, self-bumps at p. € G N Q.. We also remark that we
have X, = Wy, ), (Pn) for all n>> 0 and X;, =¥, (Pa) for all n < 0.

4.4. Bumping of any two components

As a consequence of the above arguments in this section, we obtain the following:

Theorem 4.5. Forany A, u € MLy, we have QN Q, #0.
For the convenience of the reader, we give here the same proof as in [Itoa].

Proof of Theorem 4.5. X i(A,u) = 0, we obtain the result from Theorem 4.2. Hence,
we assume that i(A,u) # 0. We decompose p into y = ¢/ + ¢ so that ¢/, (' € MLy
and that i(A,u) = i(A, ). We first consider the case where ¢’ = 0. As observed in
§4.1, there exists an element p. € QN Q, ), Which is a limit of an ACM-sequence
for (A,u),. Then the same argument as in §4.3 reveals that ¥,(p..) € Q,N @, since
A = ((A,u)p,1)y. We next consider the case where p' # 0. Since i(A,p") =0 and
i(if ,1") =0, we have i((A, /)y, ") = 0. Then as observed in §4.2, there exists a limit
Peo € Q@ N Qyr), N Qe of ACM-sequences. Then we have ¥y (p-) € Q. N Q, since
A= (A1), 1)y and since y =/ + . O

5. Additional observations

Throughout this section, we suppose that {p,} is the ACM-sequence for A as in (2.1).
We have observed that limy,—, 4o ¥3,(pPr) = Wo(p=) in §4.1 and that

lim W0, (pn) = lm ¥, () = Ppu(p) 6.1

n—-+oco

in §4.3. Now let v be an clement of M Ly such that i(v,A) # 0 and that v and A have
no parallel component in common. Then we have

lim Wv(pa) =¥y, (P=):  Hm ¥v(p,) =¥y a),(P=) (52

H— T

by substituting u=- (v,A)s orpu= (v,A)s in (5.1). Since i(v,A) # 0, we have ¥, ), (p=) #
Yy, (p=)- By choosing A suitably for every v, we obtain the following:

Theorem 5.1. The grafting map Wy : QF — P(S) does not extend continuously to
0QF for everyv ¢ MLy.



Figure 7: Analytic continuation of ¥y along 0.

We now observe some pi'téperties of analytic .continuations of local branches of
hol~!. Suppose that U is a sufficiently small neighborhood of p. € 9% QF. Let
a: 8! =RU{e} — QF UU be a continuous map such that a(n) = p, for all n € Z
and that 0/(e0) = p... (We do not know whether we can choose o so that a(S!) € Q¥ .)
The closed curve o(S!) in R(S) is also denote by a. Since ¥;(0(n)) — Wo(pe) as
|n] — oo, the branch ¥, : @ — P(S) of hol~! is continued analytically to a univalent
local branch @ : U — P(S), po. — ¥o{p) along both the paths o(R>p) and o(R<o),
and hence there exists a lift & C @ UP(U) of o for which hollg : & — o is one-to-one.
Note that the above argument does not imply that the map ¥, extends to a univalent
local branch QF UU — P(S) of hol~!. In fact, if n, € QF NU is a sequence con-
verging standardly to p.., then ¥y (1},,) converges to oo in P(S), not to ¥o(p..) € P(S).
Since P(S) is contractible, & is contractible in P(S), and hence a is contractible in
R(S). This implies that the bumping at p.. € Q¥ of the two arms of QF containing
{Pn}n>0 and {p,}n<o yields no non-trivial element of x; (R(S)). On the other hand,
let take v € M Ly as above and let us consider the analytic continuation of Wy. In
this case, since limy,—, 1o Py (0{n)) # lim,_, . ¥y (a(n)) from (5.2), the analytic con-
tinuation of the local branch ¥, along o C R(S) yields succeeding sequence of local
branches

o Yy any, Yoan), s Yoany, Yoy

(see Figure 7). Thus we obtain a lift & of a in P(S) for which holls : & — o is
infinite-to-one. We sum up the arguments in this section:

Theorem 5.2. There exists a contractible closed curve o. in R(S) whose pre-image
hol™!(a) C P(S) has connected components &, & such that the map holls, : & — o,
is one-to-one and the map hol|g : & — @ is infinite-to-one. Especially, the lift hol :
P(S)— Ig(TS' ) of the map hol : P(S) — R(S) to the universal cover is not an embedding.




References

[AC96]

[ACCS96]

[ACMO0]

[Ber60]

[BHO1}

[Bro97]

[Bro02]

[Can04]

[Ear81]

[Gol87]

[Hej75]

[Hub81]

Grafting and components of quasi-luchsion projective structures 371

N

J. W. Anderson & R. D. Canary (1996). Algebraic limits of Kleinian
groups which rcarrange the pages of a book. Invent. Math. 126 (2), 205-
214.

J. W. Anderson et al. (1996). Free Kleinian groups and volumes of hyper-
bolic 3-manifolds. J. Differential Geom. 43 (4), 738-782.

J. W. Anderson, R. D. Canary & D. McCullough (2000). The topology of
deformation spaces of Kleinian groups. Ann. of Math. (2) 152 (3), 693~
741.

L. Bers (1960). Simultaneous uniformization. Bull. Amer. Math. Soc. 66,
94-97.

K. Bromberg & J. Holt (2001). Self-bumping of deformation spaces of
hyperbolic 3-manifolds. J. Differential Geom. 57 (1), 47-65.

J. F. Brock (1997). Iteration of mapping classcs on a Bers slice: ex-
amples of algebraic and geometric limits of hyperbolic 3-manifolds. In
Lipa’s Legacy (New York, 1995), Contemp. Math., volume 211, pp. 81—
106. Amer. Math. Soc., Providence, RI.

K. Bromberg (2002). Projective structures with degenerate holonomy and
the Bers density conjecture. Preprint, math.GT/0211402.

R. D. Canary (2004). Pushing the boundary. In W. Abikoff & A. Haas
(eds.), In the Tradition of Ahlfors and Bers, 11, Contemp. Math., volume
355, pp. 109-121. Amer. Math. Soc.

C. J. Earle (1981). On variation of projective structures. In Riemann
Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Con-
ference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math.
Stud., volume 97, pp. 87-99. Princeton Univ. Press, Princeton, N.J.

W. M. Goldman (1987). Projective structures with Fuchsian holonomy. J.
Differential Geom. 25 (3), 297-326.

D. A. Hejhal (1975). Monodromy groups and linearly polymorphic func-
tions. Acta Marh. 135 (1), 1-55.

J. H. Hubbard (1981). The monodromy of projective structures. In Rie-
mann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook
Conference (State Univ. New York, Stony Brook, N.Y., 1978), Ann. of Math.
Stud., volume 97, pp. 257-275. Princeton Univ. Press, Princeton, N.J.



[Htoa}

[Itob]

{1to00]

[Kra71]

{KT901

[Luo01]

[Mas67}

[McM98]

[MT98]

[Ohs98]

K. lto. Exotic projective structures and quasi-fuchsian spaces 1. Preprint.
www.math.nagoya-u.ac, jp/~itoken/index.html.

K. Ito. On continuous extension of grafting maps. Preprint, math.GT/
0411133.

K. Ito (2000). Exotic projective structures and quasi-Fuchsian space. Duke
Math. J. 105 (2), 185-209.

I. Kra (1971). A generalization of a theorem of Poincaré. Proc. Amer:
Math. Soc. 27, 299-302. '

S. P. Kerckhoff & W. P. Thurston (1990). Noncontinuity of the action of
the modular group at Bers’ boundary of Teichmiiller space. Invent. Math.
100 (1), 25-47.

F. Luo (2001). Some applications of a multiplicative structure on simple
loops in surfaces. In Knots, Braids, and Mapping Class Groups - papers
dedicated to Joan S. Birman (New York, 1998), AMS/IP Stud. Adv. Math.,
volume 24, pp. 123--129. Amer. Math. Soc., Providence, RI.

B. Maskit (1967). A characterization of Schottky groups. J. Analyse Math.
19, 227-230.

C. T. McMullen (1998). Complex earthquakes and Teichmiiller theory. J.
Amer. Math. Soc. 11 (2), 283-320.

K. Matsuzaki & M. Taniguchi (1998). Hyperbolic Manifolds and Kleinian
Groups. Oxford Mathematical Monographs. The Clarendon Press Oxford
University Press, New York.

K. Ohshika (1998). Divergent sequences of Kleinian groups. In The
Epstein Birthday Schrift, Geom. Topol. Monogr., volume 1, pp. 419-450
(electronic). Geom. Topol. Publ., Coventry.




Giratting and components of quasi-fuchsian projective structures 37

Kentimp Io

Graduate School of Mathematics
Nagoya University

Nagoya 464-8602

Japan

itckentmath.ragoya-u.ac.jp

AMS Classification: 30F40, 57M50

Keywerds: Kleinian groups, quasi-fuchsian space, projective structures, grafting



Lond. Math. Soc. Lee. Notes 329, V/5 390 Y. Minsky. M. Sukuma & C. Series (bids.)

© Y. Yamashita, 2008
N

Computer experiments on the discreteness locus in
projective structures

Yasushi Yamashita

Abstract

This article has two purposes. First, we give a brief exposition of a method
for producing computer pictures of Bers embeddings of the Teichmiiller space of
once punctured tori. (Seec [KSWY].) Then we describe how the work of Bowditch
[Bow98] can be used to improve the algorithm mentioned above. Our second
purpose is to present several pictures produced using the algorithm and discuss
the related topics.

1. Introduction

This article has two purposes. First, we give a brief exposition of a method for pro-
ducing computer pictures of Bers embeddings of the Teichmiiller space of once punc-
tured tori. For the full details of the algorithm, we refer to [KSWY]. Then we describe
how the work of Bowditch [Bow98] can be used to improve the algorithm mentioned
above. Our second purpose is to present several pictures produced using the algorithm
and discuss the related topics.

Let us begin by outlining the algorithm for drawing a Bers slice. Let I be a
Fuchsian group acting on the unit disk ID uniformizing a once-punctured torus T, and
B>(D,T) the complex Banach space of holomorphic quadratic differentials forI" on D
with finite norm. It is well known that the complex dimension of B>(ID,T) is one and
the Teichmiiller space 7 (') of " can be realized as a bounded contractible open sub-
set in B>(D,T") through the Bers embedding. In [KSWY], we presented a method for
producing computer pictures of 7' (I"). The algorithm consists of two steps. First, for
each point in By(D,T’) ~ C, we compute the corresponding holonomy representation
of ) (T) by numerical integration of the Schwarzian equation. Second, we decide
whether the image of the representation is discrete or not and plot the discreteness
loci. One component of this locus is T(T").

The second step of the calculation is based on Jgrgensen’s theory of punctured
torus groups [Jgr03]. It describes the Ford domain for quasifuchsian groups which the
algorithm attempts to find. In our discreteness algorithm, we have adopted a heuristic
method in one step. But the heuristic is not completely rcliable and sometimes our



software is unable to determine whether or not the holonomy group is discrete even
though the corresponding point seems to be in the discreteness locus. (“Small red
island” in the postcard of Bers slice sold in the workshop on “Spaces of Kleinian
Groups” is an example.) In this paper, we modify the algorithm so as to use aspects
of Bowditch’s theory of punctured torus groups [Bow98]. With the modification, if
a given holonomy representation is discrete, we can detect its discreteness by the
modified algorithm. See Proposition 4.4.

The second purpose of this article is to present some pictures that were shown
in the Workshop on Spaces of Kleinian Groups, which took place in August 2003,
at the Isaac Newton Institute in Cambridge. These include some images of three-
dimensional objects. We hope that these pictures give us some new insight for the
shape of the Bers embedding of Teichmiiller space.

The software made by the author, which was used to produce the images, is avail-
able from the author upon request.

This paper is organized as follows. Section 2 is dedicated to the background ma-
terial, especially the Markoff maps and type preserving representations. In section 3,
we give a brief exposition of our old method for producing pictures of Bers embed-
dings and point out the problem in the original aigorithm. In section 4, we review
Bowditch’s theory and describe our modified algorithm. In section 5, we present the
results of our computer experiments.

1 thank the referee for his or her careful reading of the manuscript and a number of
very helpful comments.

2. Markoff maps of type preserving representations

In this section, we introduce the definitions and basic facts about Markoff maps and
type preserving representations for the punctured torus. We begin with Markoff map.

Let T be a once punctured torus. We fix standard generators o and P of m (7).
The commutator [a., 8] = o~ B! represents a loop around the puncture.

Recall that a slope in T is the isotopy class of an essential and nonperipheral (i.e.
it bounds neither a disk nor a once punctured disk.) simple closed curve on 7. We
identify T with the quotient space (R% — Z?)/Z2. Then the slopes in T arc in one-to-
one correspondence with QU {1/0(== =) }. To fix our notation, we choose ¢ and 8 so
that the slope of o and B are 1/0 and 0/1 respectively. For a slope g € QU {1/0}, set
S, = {g € 1 (T)| slope of g = g}. Note that 0. € Sy /9,8 € So/; and af € S;/;. We
identify the set of slopes as a subset of 0H?. Two rational numbers p/q and r/s are
Farey neighbors if |ps — gr| = 1. By joining all pairs of Farey neighbors by geodesics
in H?, we get the Farey tessellation of H? by ideal triangles which will be called Farey
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triangles. Note thit the slopes of o, B and o form an Farey triangle. By taking the
dual graph of this triangulation, we have a trivalent graph T properly embedded in H?Z,

By a complementary region of L, we mean the closure of a connected component of
the complement. (These notations are takcn directly from [Bow98].) These look like
polygonal horodisks, and the boundary of each one consists of a bi-infinite sequence of
Dehn twists around a fixed curve. Note that each complementary region corresponds
to a slope in T, so we will usc rational number to denote a complementary region.
Each edge e of ¥ meets four complementary regions X,Y,Z, W in such a way that
e=XNY,and eNZ and eNW are vertices of . We denote this edge eby (X,Y;Z,W).
We denote by V(Z), E(Z) and Q the set of vertices, edges and complementary regions
of Z respectively.

Definition 2,1, A triple of complex numbers (x,y,z) is called a Markoff triple if they
satisfy the following equation:

2+ +2 =xyz. @2.1)
A map ¢: Q — Cis called a Markoff map if

(i) for all vertices v &€ V(X), the triple (¢(X),9(Y),0(Z)) is a Markoff triple, where
X,Y,Z & Q are the three complementary regions meeting v.

(ii) f e € E(T), we have
Xy =w-+z 2.2)

where e = (X,Y;Z,W) and x = ¢(X),y = (Y ),z = ¢(Z),w = ¢(W).

We denote by @ the set of all Markoff maps. There is a bijective correspondence
between the set of all Markoff triples and the set of all Markoff maps which is given
as follows. For ¢ € ®, we get Markoff triple (¢(1/0),6(0/1),0(1/1)). If we have a
Markoff triple (x,y,z), set ¢(1/0) = x,¢(0/1) =y,¢(1/1) = z. We can extend this map
to other complementary regions by using rclation (2.2). The conditions for vertices are
automatically satisfied.

On @, observe that there is an involution A of changing signs of two entries in a
Markoff triple.

Fix a Markoff map ¢ € ®. For each edge e € E(X), we assign a direction on e as
follows: if e = (X,Y;Z,W) and [¢(Z)| > |[¢(W)], then we have the arrow from eNZ
to eNW. If the norms are equal, the edge can be oriented arbitrarily.

Next, we consider the PSL,(C) represcntations of ; (7).

Definition 2.2. A representation p : m; (7)) — PSL»(C) is called type preserving if
trp([os, B]) = —2.
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Note that the sign of the trace of commutator in PSL,(C) is well defined. Also
note that —2 (and not 2) is the right choice if one wants to include the Fuchsian uni-
formization of a punctured torus among the representations considered.

Set x =trp(a), y =trp(B) and z = trp(af). The triple (x,y,z) is well defined up .
to changing the signs of any two entries which corresponds to the action A mentioned
above. Recall the well known trace identities for SLy(C):

trXuwy =uwXY +tXy !,
2+1[X,Y] = (rX)? + (tr¥ )% + (e XY)? —trX trY trXY.

Since our representation is type preserving, these equation implies that (x,y.z) is a -
Markoff triple and the map defined by ¢(X) = trp(g), where g € 7, (T) represents the -
slope which corresponds to X & €, is a Markoff map. ;

Conversely, given any Markoff triple (x,y,z), we can reconstruct the type pre- :
serving representation up to conjugacy. This representation can be realized by using
Jgrgensen’s normalization and denoted by Py y..

Paya(0) 1(” ¢ Y/"), px,y,z(B)=1<"'—y _Z/"). @.3)

x\ xy b4 x \ —xz y

A type preserving representation p is quasifuchsian if it is discrete, faithful and
geometrically finitc without accidental parabolics. The set of quasifuchsian represen-
tations is open and dense in the discreteness locus. This is also true in a Bers slice.
(See [ST99].) We denote by Ppr the set of Markoff maps corresponding to quasi-
fuchsian representations.

3. Drawing the Bers slice

In this section, we give a brief exposition of a method for producing pictures of Bers
embeddings which consists of two steps. In subsection 3.1, we describe the first step
which is about calculating holonomy. In subsection 3.2, we describe the second step.
This is about discreteness of the holonomy and includes a difficulty which will be
addresscd in subsection 3.3.

3.1. Holonomy of projective structures

Let I" be a Fuchsian group acting on the unit disk D) uniformizing a once punctured
torus T'. A projective structure ¢ on T is, by definition, a geometric structure modeled
on (C,PSL;(C)). Such a projective structure ¢ can be expressed by the corresponding
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developing map f ‘T ~ 1) -+ C and the holonomy representation pg : % ((T) =T —
PSL,(C) defined by fy o7 = ps(Y) o f (Y€ T) up to Mibius conjugacy.

Let P be the space of (marked) projective structures on T and 7 the Teichmiiller
space of T. Then we have a natural projection Tt : ¢ — 7. For an element X &
T, define K(X) := {¢ C n~1(X) | po(m(T)) is discrete in PSL,(C)}. Recall that a
projective structure ¢ with quasifuchsian holonomy is called standard if the developing
map fy is injective and exotic otherwise. There exists an unique component Ky of
int K(X) which consists of the standard structures. This is the image of Teichmiiller
space T of once punctured torus 7' in the Bers embedding.

Let X := {p € Hom(m;(T'), PSL,(C))|irreducible and type preserving}/ ~ where
~ is the equivalence relation of PSL;(C)-conjugacy. The first step in imaging the
Bers slice is to calculate the map from ! (X) to X. By taking the Schwarzian deriv-
ative of the developing map, ©~!(X) is identified with By(ID,T") the complex Banach
space of holomorphic quadratic differentials for I" on ID with finite norm, where I' is a
Fuchsian group such that X is uniformized by I". The space B,(ID,I") is identified with
B>(S).), an affine subspace of the space of meromorphic differentials on S where S,
is the 4-times punctured sphere C — {0,1,00,A} which is commensurable to X. The
pole structure of the differential is prescribed by the commensurate coverings, and the
accessory parameter is the point on this affine space that corresponds to the zero dif-
ferential on the torus. The relation between the above two is explained in [KSWY].

Then we have .

2z—=1D)(z—A)
Our idea is to compute the developing map on S, instead of ID. We take a branch P of
p~! around p(0), where p: D — §; is the covering projection, so that P(p(0)) = 0.
Put g4(z) := fy(P(z)). (Recall that f; is the developing map of ¢ € t~='.) Then we
have {gy,2}=1t" z(z_-lli(z—_x) -+{P,z} for some t € C, where {, } denotes the Schwarzian

By(8)) = {t

tE(C}. (3.1)

derivative. We have {P,z} = %2‘ + 3G _L:)—;(»zz_x)z + Z(Z_CI(;ZZ_M, where c(A) is the acces-

sory parameter. (See Lemma 2.1 and the related arguments in [KSWY].) For each
elcment ¢ - m € By(Sy), we solve the following differential equation, which
corresponds to the Schwarzian derivative of gy, numerically.

r (L (1= i ) -
'+ (212 + 2(z— 1)%(z —A)? + - DN y=0, 3.2)

In the above equation, we set ¥ =1 -+ ¢(A). Using a pair of fundamental solutions
of (3.2} along a certain loops, we get the generators for the image of the holonomy
representation Py € X.



3.2. Jorgensen’s theory of once punctured tori

The second step of the algorithm is to decide the discreteness of the holonomy rep-
resentation. Some sufficient conditions for a given holonomy representation to be
discrete and conditions to be indiscrete are known. Well known Jgrgensen’s inequal-
ity is a sufficient condition for indiscreteness [Jgr76]. In our algorithm we have used a
more elementary version due to Shimizu and Leutbecher [Shi63]. On the other hand,
if we can construct a fundamental region for py (71 (T) and can apply Poincaré’s poly-
gon theorem (See for instance [Rat94].), the image is discrete and an element of K(X).
Difficuities arise because, a priori, we have to consider infinitely many group elements
inT" to apply Shimizu-Leutbecher’s Lemma or to construct a fundamental polyhedron.
Here, Jorgensen’s theory of punctured torus group |Jgr03] plays a crucial rule. Let us
review this theory very briefly.

We use the notations introduced in section 2. For each vertex v in £ we can asso-
ciate a subset Sy of 71 (T) by

Sy =8q, USq, USy;,

where slopes g1,42,g3 € QU {eo} are the ideal vertices of the triangle in Farey tessel-
lation which is dual to v. (The notion S;, where g is a slope, was introduced in section
2.) Set I, = {isometric hemisphere of g | g € S,}. I, is an infinite set of hemispheres
bounded by equally horizontally spaced circles in the complex plane.

The principal result of Jgrgensen’s theory is that if thc image of the holonomy rep-
resentation Py, is discrete, then there is a path P in T which depends on (x,y,z) such
that the boundary of the Ford region is given by | J,cpl,. After Jgrgensen’s normal-
ization, which was introduced in the previous subsection, we can define a direction
of “apward” / “downward” in P. We will say that some vertex v € P is the up-
per/lower neighbor of v € P if V' is adjacent to v and the direction from v to v/ is
upward/downward. We will also use terms like “upper end point” / “lower end point”
of P for end points of P. See Figure 1. The left figure is the Farcy tessellation and the
dual graph Z. This figure depicts the case where the value of (x,y,z) is approximately
(2.536 - 1.115i,2.616 — 0.645i,2.203 +0.660i). (Note that, under small deformation
of the trace, the combinatorial structure of the Ford domain is stable.) Jgrgensen’s
path is illustrated by the thick path in Z. The vertex which is dual to A(1/1,0/1,1/2)
is the upper end point and the vertex which is dual to A(1/0,0/1,—1/1) is the lower
end point. Isometric hemispheres are depicted in the right figure.

Jgrgensen’s theory allows one to identify the Ford domain given a vertex in the
Farey tree that belongs to corresponding Jgrgensen’s path. A key point here is that for
a quasifuchsian group, Jgrgensen’s path is finite, and that there is a way to identify
this path starting from any of its vertices with finitely many operations. This presents

D — -
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Farey tessellation

Figure 1: A path in the Farey tree (at left, with the dual tessellation) corresponds to a set of
isometric hemispheres bounding the Ford domain (right) in Jgrgensen’s theory

a problem if one does not know any of these vertices.

3.3. A problem in the original algorithm

As explained in the previous subsection, Jgrgensen’s theory tells us how to choosc
group elements to construct the fundamental region if py(7; (T') is discrete and if iso-
metric hemispheres of o, f and af are part of the boundary of the Ford region.

Of course, we can not expect the latter condition in general and we used an ad hoc
method to deal with these situations. But the algorithm sometimes fails to determine
whether or not the groups is discrete. See Figure 2.

Figure 2: The original algorithm somctimes fails to recognize holonomy groups that are dis-
crete, as seen in the gray points surrounded by two ovals.

In Figure 2, white region is where the output was discrete and black region, indis-
crete. But we can see “gray pixels” surrounded by two ovals. These points seem to
correspond to discrete holonomy because of the stability of the combinatorial struc-
ture of the Ford domain under small deformation of the trace. But our algorithm could
not determine that these are discrete.

In this note, we suggest a method to deal with this situation based on Bowditch’s
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theory of Markoff triple and quasifuchsian groups.

4. An improved discreteness algorithm

4.1. Bowditch’s theory of Markoff triples and quasifuchsian groups

We recall some arguments which arc necessary to modify our algorithm. Both notation
and arguments are taken from [Bow98].

Given Markoff map ¢ and some k > 0, define Q(k) == Q4(k) C Q by

Qy(k)={X € Q| [¢(X)| <k}.

Set
Dg:= {0 € P |07 ([-2,2]) == 0, Qy(2)is finitc set} .

From Lemma 4.4 (or see the paragraph before Lemma 4.6.) of [Bow98], we have that
®or C Pg. Bowditch proposed an interesting conjecture.

Conjecture 4.1 ([Bow98| Conjecture A). A Markoff map lies in ®g if and only if it
is a quasifuchsian representation.

Bowditch described a finite criterion for recognizing that a given Markoff map lies
in ®¢. To state his criterion, let us introduce some definitions.

Fix a Markoff map ¢.

Suppose X € Q. Then 0X is a bi-infinite path consisting of edges of the form
X NY,, where (Y,)ncz is a bi-infinite sequence of complementary regions. Set x =
O(X),¥n = 0(¥n) (n € Z),y = yo. Suppose that x € C\{~2,2} and we have x = A+A"!
with |A] > 1. Then there are constants A,B € C with AB = x*/(x*> — 4) such that
¥n = AA" 4 BA . (See [Bow98] paragraph before Lemma 3.3.) Note that |y,| grows
exponentially as n — o and as n — o, (Lemma 3.3 (1) [Bow98])

Then we can find a continuous function H : C\{—2,2} — (0,=°) such that therc
are numbers ng < n; € Z so that |y,| < H(x) if and only if np < n < n; and so that
[yn| is monotonically decreasing on (—eo,np — 1] and monotonically increasing on
[n1 +1,00). We also assume that H(x) > 2 for all x. (See [Bow98] paragraph before
Lemma 3.14) Bowditch did not provide a formula for H(x) in his paper. In our
implementation of the algorithm, we defined H (x) as follows:

H(x) = \/12/ (2~ 4.0)| (1M +1.0) [Al/(1A] - 1.0),

where A is defined from x as mentioned above.

1
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Detine a subtree T(z) (+ > 0) of £ as follows. Let e be an edge of ¥ with ¢ =
XNY € E(X) where X and Y are complementary regions. Then e is an edge of T'(¢) if
and only if ether |x| <2 +zand |y| < H(x)+tor |yl <2+¢tand x| <H(y) -+t

Lemma 4.2 ({iBow98] Lemma 3.15). For any fixed t > 0, we have ¢ € $¢ if and only
if T(t) is finite.

T (¢) has the following nice properties.

Lemma 4.3.

(D) Ift > 1, T(t) £ 0. ([Bow98] Theorem 1(1}))
(ii) T(¢) is connected. ([Bow98] Lemma 3.11)

(ii) If T(t) £ O, the arrow on any edge not in T(t) points toward T (t). ([Bow98]
Lemma 3.11)

Here, we give a skeich of the proof that T(¢) can be identified in finitely many
steps. Set z = 1. Using Lemma 4.3, we can check that 7'(1) is finite (<> ¢ € $g by
Lemma 4.2) if it is by the following algorithm. (If T (1) is infinite, the algorithm will
not stop.)

Let vp be the vertex of ¥ which is dual to A(1/0, 0/0, 1/1). Starting from vy, if
we follow the arrows on edges, we can reach 7(1) because it is not empty and the
arrow on any edge not in 7 (1) points toward 7(1). Then we can check that T(1) is
finite if it is since T(1) is connected.

4.2. Modified algorithm

In this section, we discuss an algorithin that starts with a Markoff map and produces
one of three outputs: “discrete”, “not discrete”, or “undecided”. One possible algo-
rithm for discreteness is, believing that Conjecture 4.1 true, just follow the algorithm
described in the previous subscction—one would find the Bowditch tree T'(¢) and call
a representation discrete if it is finite.

But our approach here is a little bit more careful which is defined as follows.

(i) Starting from vg, we locate T(1). This is done by (substep a) following the
arrows on edges in X to reach one vertex in 7'(1) and (substep b) using depth
first search to find all the vertices in T(1). The above (substep b) may not
finish in a finite time because T'(1) can be infinite. If the number of vertices
in T (1) found by this search becomes bigger than a fixed constant (say 10000),
we stop our calculation and go to step (iv). We also have to consider about
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indiscreteness. Recall that for each vertex in X there are three complementary
regions (slopes) adjacent to v. When we come to a new vertex in (substep a)
and (substep b), we test Shimizu-Leutbecher’s Lemma for each complementary
region associated to the vertex and output “indiscrete” if necessary.

(ii) Suppose that we could find that T'(1) is finitc. Consider the complementary
regions which are adjacent to T(1). Choose one complementary region X (i.e.,
slope) whose value of modulus of Markoff map |¢(X)| is the smallest. This
slope X corresponds to the isometric hemispheres with the largest radius, so X
must be a part of the walls of the Ford region if it is discrete. Observe that there
is a finite sequence of complementary regions {Y, } such that cach ¥; is adjacent
to X and the edge adjacent to both X and ¥; is in T(1). From this set, choose
one complementary region ¥; whose modulus |$(Y;)| is the smallest. Then two
vertices vi,v; in T(1) which are adjacent to both X and ¥; must be in Jgrgensen’s
path if it is discrete.

(iii) Then start Jgrgensen’s algorithm from v;( i = 1 or 2) to find Jgrgensen’s path
P. Again, when we come to a new vertex in this process, we test Shimizu-
Leutbecher’s Lemma for each complementary region associated to the vertex
and output “indiscrete” if necessary. If this process will finish successfully and
we can construct the Ford region, the output is “discrete”. But, this process may
not finish in a finite time because P can be infinite for geometrically infinite
group, even though we can almost ignore this possibility. If the number of
vertices in P found by this search becomes bigger than a fixed constant (say
10000), we stop our calculation and go to step (iv). Jgrgensen’s algorithm does
not cover all the possible cases of the configuration of isometric hemispheres,
because it only works when the group is discrete. Thus, in some cases, we can
not continue Jgrgensen’s algorithm and go to (iv).

(iv) Try to show that the group is indiscrete. Using depth first search, we test
Shimizu-Leutbecher’s Lemma for each complementary region of each vertex
in X. The output is “indiscrete” if we can find a complementary region which
satisfies the condition of the lemma. This process may not finish in a finite time.
We stop after a fixed number of search and output “unknown”.

Suppose that ¢ € Pgr. Since Por C Py, ¢ € P and our algorithm must to be
able to find that 7T(1) is finite. If we start from v or v, mentioned above, we can find
Jgrgensen’s path P. Therefore, we have:

Proposition 4.4. If ¢ € $gr, the algorithm described above will determine this in
Jfinite time that ¢ € PgF.
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-
We remark that in the course of computer experiments with this algorithm, we
have not yet found any countercxamples to Conjecture 4.1.

5. Computer experiments on the discreteness locus

Throughout the development of Kleinian group theory, exploratory computer graph-
ics have consistently played an important role. The pioneering work was done by
Mumford, McMullen, and Wright [MMW] that later lead to [MSWO02].

In this section we present some pictures of our computer experiments of the dis-
creteness locus.

5.1. Three-dimensional slice of quasifuchsian space

Before the workshop in Newton Institute, we produced pictures of many kinds of slices
of punctured torus groups. At the suggestion of Wada, we used the software package
DeltaViewer [Wad] to produce three-dimensional pictures of a family of slices. In our
talk in the workshop, using DeltaViewer, we presented a three-dimensional picture
made from one parameter family of trace-constant slices with tr(a) from 2 to 10 (See
Figure 3.), and a three-dimensional picture made from one parameter family of Bers
slices (See Figure 4.).

Figure 3: One parameter family of trace constant slices. (2 < tr(at) < 10) For top face, tr(ct) =2
(Maskit slice) and bottom tr{at} = 10. This is a screen shot produced by DeltaViewer.

Series also suggested that we produce a three-dimensional image from a family
of slices each of which has a trace fixed and changing the value in the imaginary
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Figure 4: One parameter family of Bers slices: This is a family of rectangular punctured tori
with the square torus Bers slice cotresponding to a horizontal plane through the center of the
picture. The standard component Kp (See 3.1.) is located at the center and two other (exotic)
components of discreteness loci are nearly touching the standard component at the top face and
the bottom face. This is a screen shot produced by DeltaViewer.

direction. We thought that an interesting example may be from tr{o) = 2 (Maskit
slice) to tr{e) = 2 + 6i and produced such picture. (The picture for the case tr(a) =
2+ 61 was presented by McMullen in [McM98] to illustrate the topological complexity
of the closure of the space of quasifuchsian groups in X. See also Figure 10.20 of
IMSW02].)

DeltaViewer is a free software which runs only on Apple Macintosh computers.
The data for the figures in this section and the one requested by Series are available
from the author upon request.

5.2. Overhang in the boundary of Bers slice

For the boundary of the Maskit slice, the phenomenon of “overhang” is observed.
(See Figure 10.5 “Overhang in the Maskit boundary” of [MSWO02].) Motivated by
this figure, we have carried out a computer experiment.

Figure 5 shows a collection of images of a Bers slice for the square torus. The
center of the picture is 0.6166004915862 — 0.0011501283077i and width and height
is 0.2. (Recall that the coordinate of the plane is given by (3.1).) Then we zoom in the
picture with factor = 10 having the same center to get the next picture. We continue
the process of this zooming in with center and factor fixed. For the last picture, the
width and height of the region is 0.000000000002. The order of the picture is from
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Figure 5: Overhang in the Bers slice boundary for square torus. The center for all the picture
is 0.6166004915862  0.0011501283077i. For upper left. the width and the height is 0.2, Then
we zoom in with factor 10. The order of the picture is from left to right and from up to bottom.



left to right and from top to bottom. Thercfore, for Bers slice, we can also sce the
overhang in the boundary.

We remark that the idea for this particular choice of center mentioned above is
very simple. We can see the triangulation (except the center square) of the Bers slice
for square torus in our picture. (The color is determined according to the length of
Jgrgensen’s path P.) First, suppose that we are sitting at the center of the Bers slice
and facing upward (north). We move to the adjacent “right” triangle. Again we move
to the adjacent “right” triangle. We continue this process 16 times more. Then we
move to “left” adjacent triangle. Then we move to “right” adjacent triangle 18 times
and next move to “left”. We repeated this “right turn 18 times and left turn one times”
period several times and get the value of the above center. The number 18 was chosen
because the period of the color of our picture happened to be 18.

In [KSWY], we have observed numerically the asymptotic self-similarity of the
Bers slice for square torus, too. This phenomena was first discovered by McMullen
for Maskit slice |[McM96].

5.3. Final remark

The aim of producing these piciures is to find the presence of new phenomena.

Let us present an example. During the poster session of the workshop, Ito pre-
sented his theorem (see [Ito] for necessary notations and details.)

Theorem 5.1 ({Ito] Theorem A). For any A € MLz (S) — {0}, there exists a point

Y € QN 'Q, such that U N Q, consists of more than 2 components for any sufficiently
small neighborhood U of Y.

See also the related work on bumping and self-bumping of deformation spaces by
Anderson-Canary [AC96], McMulien [McM98] and Bromberg-Holt {BHO1].

In Figure 6, the Bers embedding is visible and seems to be touched by thin “arms”.
The “arms” belong to other components because other standard projective structure
can not appear in this plane 7! (square torus). (See subsection 3.1.) These “arms”
are studied in Ito’s paper,

He used our picture, which is like the one in Figure 6, in his paper and said, “This
graphic seems to guarantee the claim of the theorem”.

We hope that computer graphics can stimulate research in this field.

£ By
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Figure 6: Bers slice for C- {0,1,00,0.5+ 108i}. The center is 0.5 + 4.0 x 107{ and width and
height is 2.0 x 107,
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